Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
A=\(4x^2-4x+5\)
A=\(\left(2x\right)^2-4x+1+4\)
A=\(\left(2x-1\right)^2+4\)
vì \(\left(2x-1\right)^2\)≥0 với mọi x
⇒\(\left(2x-1\right)^2+4\)≥4 với mọi x
Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0
⇔2x-1=0
⇔x=\(\dfrac{1}{2}\)
Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)
B=\(3x^2+6x-1\)
B=3(\(\left(x^2+2x\right)\)-1
B=\(3.\left(x^2+2x-1+1\right)-1\)
B=\(3.\left(x+1\right)^2-3-1\)
B=\(3\left(x-1\right)^2-4\)
vì \(3.\left(x-1\right)^2\)≥0 với mọi x
⇒\(3\left(x-1\right)^2-4\)≥-4 với mọi x
dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)
⇔x-1=0
⇔x=1
vậy GTNN của B=-4 khi x=1
\(a,x^2+2x+7\)
\(=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
\(V\text{ì}\left(x+1\right)^2\ge0\)
\(\left(x+1\right)^2+6\ge0+6\)
\(\left(x+1\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy MinA=6 khi x=-1
b) \(x^2+x+1\)
\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(x=\dfrac{1}{2}\)
\(C=2x^2+6x-2=2\left(x^2+3x-1\right)\)
\(=2\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{13}{4}\right)\)
\(=2\left(x+\frac{3}{2}\right)^2-\frac{13}{2}\ge-\frac{13}{2}\)
Đẳng thức xảy ra khi \(x=-\frac{3}{2}\)
Vậy...
E tương tự
F đang suy ra nghĩ
\(G=2x^2+2xy+y^2-2x+2y+2\)
\(=2x^2+2\left(y-1\right)x+y^2+2y+2\)
\(=2\left[x^2+2.x.\frac{y-1}{2}+\frac{\left(y-1\right)^2}{4}\right]+y^2+2y+2-\frac{\left(y-1\right)^2}{2}\)
\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+3}{2}\)
\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+9}{2}-\frac{6}{2}\)
\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{1}{2}\left(y+3\right)^2-3\ge-3\)
Đẳng thức xảy ra khi x=2 y = -3
Vậy..
Làm luôn câu E:
\(E=-2x^2+3x+1=-2\left(x^2-\frac{3}{2}x-\frac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{17}{16}\right)\)
\(=-2\left(x-\frac{3}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
ĐẲng thức xảy ra khi x = 3/4
P/s: Chắc là có tính nhầm đấy:)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
Bài 2: sửa đề: Tìm GTNN
a, \(A=x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\)
Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy \(MIN_A=1\) khi x = 3
b, \(B=x^2+y^2-2x+4y+5\)
\(=x^2-2x+1+y^2+4y+4\)
\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(MIN_B=0\) khi x = 1 và y = -2
M = -x2 +3x + 3x + 9 - 8
M = -x .( -x -3 ) - 3 .( -x -3 ) - 8
M =( -x -3 ) . ( -x -3 ) - 8
M = ( -x -3 ) 2 -8
Vì ( -x -3 )2 >= 0 suy ra ( -x -3 ) 2 -8 >= -8
=> - ( -x -3) 2 + 8 <= 8
dấu " = xẩy ra <=> -x -3 =0 <=> x = -3
khi đó GTLN M = 8 khi x = -3