K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

M = -x2 +3x + 3x + 9 - 8

M = -x .( -x -3 ) - 3 .( -x -3 ) - 8

M =( -x -3 ) . ( -x -3 ) - 8

M = ( -x -3 ) 2 -8 

Vì ( -x -3 )>= 0  suy ra  ( -x -3 ) 2 -8  >= -8

=> - ( -x -3)  + 8 <= 8 

dấu " = xẩy ra <=> -x -3 =0 <=> x = -3 

31 tháng 7 2016

khi đó GTLN M = 8 khi x = -3 

12 tháng 7 2018

1.

A=\(4x^2-4x+5\)

A=\(\left(2x\right)^2-4x+1+4\)

A=\(\left(2x-1\right)^2+4\)

\(\left(2x-1\right)^2\)≥0 với mọi x

\(\left(2x-1\right)^2+4\)≥4 với mọi x

Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0

⇔2x-1=0

⇔x=\(\dfrac{1}{2}\)

Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)

B=\(3x^2+6x-1\)

B=3(\(\left(x^2+2x\right)\)-1

B=\(3.\left(x^2+2x-1+1\right)-1\)

B=\(3.\left(x+1\right)^2-3-1\)

B=\(3\left(x-1\right)^2-4\)

\(3.\left(x-1\right)^2\)≥0 với mọi x

\(3\left(x-1\right)^2-4\)≥-4 với mọi x

dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)

⇔x-1=0

⇔x=1

vậy GTNN của B=-4 khi x=1

16 tháng 10 2017

\(a,x^2+2x+7\)

\(=x^2+2x+1+6\)

\(=\left(x+1\right)^2+6\)

\(V\text{ì}\left(x+1\right)^2\ge0\)

\(\left(x+1\right)^2+6\ge0+6\)

\(\left(x+1\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy MinA=6 khi x=-1

b) \(x^2+x+1\)

\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(x=\dfrac{1}{2}\)

16 tháng 10 2017

Bn tự lm theo phom đó rồi kết luận nhé. Mỏi tay ghê

4 tháng 8 2019

\(C=2x^2+6x-2=2\left(x^2+3x-1\right)\)

\(=2\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{13}{4}\right)\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{13}{2}\ge-\frac{13}{2}\)

Đẳng thức xảy ra khi \(x=-\frac{3}{2}\)

Vậy...

E tương tự

F đang suy ra nghĩ

\(G=2x^2+2xy+y^2-2x+2y+2\)

\(=2x^2+2\left(y-1\right)x+y^2+2y+2\)

\(=2\left[x^2+2.x.\frac{y-1}{2}+\frac{\left(y-1\right)^2}{4}\right]+y^2+2y+2-\frac{\left(y-1\right)^2}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+3}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{y^2+6y+9}{2}-\frac{6}{2}\)

\(=2\left(x+\frac{y-1}{2}\right)^2+\frac{1}{2}\left(y+3\right)^2-3\ge-3\)

Đẳng thức xảy ra khi x=2 y = -3

Vậy..

4 tháng 8 2019

Làm luôn câu E:

\(E=-2x^2+3x+1=-2\left(x^2-\frac{3}{2}x-\frac{1}{2}\right)\)

\(=-2\left(x^2-2.x.\frac{3}{4}+\frac{9}{16}-\frac{17}{16}\right)\)

\(=-2\left(x-\frac{3}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

ĐẲng thức xảy ra khi x = 3/4

P/s: Chắc là có tính nhầm đấy:)

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

5 tháng 7 2017

Bài 2: sửa đề: Tìm GTNN

a, \(A=x^2-6x+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1\)

Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

Vậy \(MIN_A=1\) khi x = 3

b, \(B=x^2+y^2-2x+4y+5\)

\(=x^2-2x+1+y^2+4y+4\)

\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(MIN_B=0\) khi x = 1 và y = -2

5 tháng 7 2017

ý b sai đề hả