Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(A=\sqrt{x^2+(y+1)^2}+\sqrt{x^2+(y-3)^2}\)
\(\Leftrightarrow A=\sqrt{x^2+(2x-1)^2}+\sqrt{x^2+(2x-5)^2}\)
ÁP dụng BĐT Cauchy-Schwarz:
\([x^2+(2x-1)^2](2^2+1)\geq (2x+2x-1)^2\Rightarrow \sqrt{x^2+(2x-1)^2}\geq \frac{|4x-1|}{\sqrt{5}}\)
\([x^2+(2x-5)^2](2^2+11^2)\geq (2x+55-22x)^2\Rightarrow \sqrt{x^2+(2x-5)^2}\geq \frac{|-20x+55|}{5\sqrt{5}}=\frac{|-4x+11|}{\sqrt{5}}\)
\(\Rightarrow A\geq \frac{|4x-1|+|-4x+11|}{\sqrt{5}}\geq \frac{|4x-1-4x+11|}{\sqrt{5}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)
Vậy \(A_{\min}=2\sqrt{5}\Leftrightarrow x=\frac{2}{3}\)
thiếu y=-2/3 nhé cái này mk làm xong lâu r`, dù sao cx cảm ơn
\(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{x^2+2x+1}\)
\(\Leftrightarrow2\left(x^2-y+1\right)=log_{2018}\left(\frac{2x+y}{x^2+2x+1}\right)\)
\(\Leftrightarrow2\left(x^2+2x+1-2x-y\right)=log_{2018}\left(2x+y\right)-log_{2018}\left(x^2+2x+1\right)\)
\(\Leftrightarrow2\left(x^2+2x+1\right)+log_{2018}\left(x^2+2x+1\right)=log_{2018}\left(2x+y\right)+2\left(2x+y\right)\)
Đặt \(f\left(u\right)=log_{2018}u+2u\)
\(\begin{matrix}x^2+2x+1>0\\2x+y>0\end{matrix}\Rightarrow u>0\)
\(f'\left(u\right)=\frac{1}{u.ln2018}+2>0\)
Suy ra hàm số đồng biến
\(\Leftrightarrow f\left(x^2+2x+1\right)=f\left(2x+y\right)\)\(\Leftrightarrow x^2+2x+1=2x+y\) (tính chất hàm đồng biến)
\(\Leftrightarrow y=x^2+1\)
\(P=2y-3x=2x^2-3x+2\)
\(P=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)
\(P_{min}=\frac{7}{8}\) khi \(x=\frac{3}{4}\)
Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)
Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB
Gọi G là trọng tâm của tam giác ABC, ta có :
\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)
Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC
Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có
\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)
\(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)
Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\) (1)
Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\) (2)
\(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)
\(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)
\(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)
\(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\) (3)
Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)
Hơn nữa, bằng kiểm tra trực tiếp ta thấy \(P\ge\sqrt{3}\) khi x=0
Vậy min P=\(\sqrt{3}\)
Áp dụng bất đẳng thức Cô - si, ta có :
\(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)
\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\) (1)
Lại theo bất đẳng thức Cô si thì :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\) (2)
Vì \(xyz=1\) nên ta có :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)
Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)
Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)
Ta có :
\(P=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\) (1)
Do : \(x^2+y^2+z^2\ge xy+yz+zx\), nên từ (1) ta có :
\(P\ge\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+\frac{x^2+y^2+z^2}{xyz}\)
\(P\ge\left(\frac{x^2}{2}+\frac{1}{x}\right)+\left(\frac{y^2}{2}+\frac{1}{y}\right)+\left(\frac{z^2}{2}+\frac{1}{z}\right)\) (2)
Xét hàm số \(f\left(t\right)=\frac{t^2}{2}+\frac{1}{t};t>0\)
Ta có : \(f'\left(t\right)=t-\frac{1}{t^2}=\frac{t^3-1}{t^2}\)
Lập bảng biến thiên sau :
t f'(t) f(t) 0 1 - + 8 8 + + 3 2
Từ đó suy ra :
\(f\left(t\right)\ge\frac{3}{2}\) với mọi \(t>0\)
Vì lẽ đó từ (2) ta có : \(P\ge3.\frac{3}{2}\) với mọi \(x,y,z>0\)
Mặt khác khi \(x=y=z\) thì \(P=\frac{9}{2}\) vậy Min \(P=\frac{9}{2}\)
\(\left(xy-1\right)2^{2xy-1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow\left(xy-1\right)2^{2\left(xy-1\right)+1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow2\left(xy-1\right)2^{2\left(xy-1\right)}=\left(x^2+y\right)2^{x^2+y}\)
Do vế phải luôn dương \(\Rightarrow VT>0\Rightarrow xy-1>0\) (1)
Xét hàm \(f\left(t\right)=t.2^t\) với \(t>0\Rightarrow f'\left(t\right)=2^t+t.2^t.ln2>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow2\left(xy-1\right)=x^2+y\Rightarrow2xy-y=x^2+2\) (thay \(x=\dfrac{1}{2}\) thấy ko phải nghiệm)
\(\Rightarrow y=\dfrac{x^2+2}{2x-1}\) (2)
Thay (2) vào (1): \(xy-1>0\Rightarrow x.\left(\dfrac{x^2+2}{2x-1}\right)-1>0\Rightarrow\dfrac{x^3+2x}{2x-1}-1>0\)
\(\Rightarrow\dfrac{x^3+1}{2x-1}>0\Rightarrow2x-1>0\) (do \(x>0\Rightarrow x^3+1>0\))
Vậy \(y=\dfrac{x^2+2}{2x-1}=\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4\left(2x-1\right)}=\dfrac{2x-1}{4}+\dfrac{9}{4\left(2x-1\right)}+\dfrac{1}{2}\)
\(\Rightarrow y\ge2\sqrt{\dfrac{\left(2x-1\right)}{4}.\dfrac{9}{4\left(2x-1\right)}}+\dfrac{1}{2}=2\)
\(\Rightarrow y_{min}=2\) khi \(\dfrac{2x-1}{4}=\dfrac{9}{4\left(2x-1\right)}\Rightarrow x=2\)
Đáp án B
Bài này thì chia 2 vế của giả thiết cho z2 ta thu được:
\(\frac{x}{z}+2.\frac{x}{z}.\frac{y}{z}+\frac{y}{z}=4\Leftrightarrow a+2ab+b=4\)
(đặt \(a=\frac{x}{z};b=\frac{y}{z}\)).Mà ta có: \(4=a+2ab+b\le a+b+\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\ge2\) Lại có:
\(P=\frac{\left(\frac{x}{z}+\frac{y}{z}\right)^2}{\left(\frac{x}{z}+\frac{y}{z}\right)^2+\left(\frac{x}{z}+\frac{y}{z}\right)}+\frac{3}{2}.\frac{1}{\left(\frac{x}{z}+\frac{y}{z}+1\right)^2}\) (chia lần lượt cả tử và mẫu của mỗi phân thức cho z2)
\(=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}+\frac{3}{2\left(a+b+1\right)^2}\).. Tiếp tục đặt \(t=a+b\ge2\) thu được:
\(P=\frac{t}{\left(t+1\right)}+\frac{3}{2\left(t+1\right)^2}=\frac{2t\left(t+1\right)+3}{2\left(t+1\right)^2}\)\(=\frac{2t^2+2t+3}{2\left(t+1\right)^2}-\frac{5}{6}+\frac{5}{6}\)
\(=\frac{2\left(t-2\right)^2}{12\left(t+1\right)^2}+\frac{5}{6}\ge\frac{5}{6}\)
Vậy...
P/s: check xem em có tính sai chỗ nào không:v
\(P=\sqrt{\left(1-x\right)^2+y^2}+\sqrt{\left(x+1\right)^2+y^2}+2-y\)
\(P\ge\sqrt{\left(1-x+x+1\right)^2+\left(y+y\right)^2}+2-y\)
\(P\ge\sqrt{4y^2+4}+2-y=2\sqrt{y^2+1}+2-y\)
Xét hàm \(f\left(y\right)=2\sqrt{y^2+1}-y+2\)
\(f'\left(y\right)=\frac{2y}{\sqrt{y^2+1}}-1=0\Leftrightarrow2y=\sqrt{y^2+1}\) (\(y\ge0\))
\(\Leftrightarrow3y^2=1\Rightarrow y=\frac{\sqrt{3}}{3}\)
Từ BBT ta thấy \(f\left(y\right)_{min}=f\left(\frac{\sqrt{3}}{3}\right)=2+\sqrt{3}\)
\(\Rightarrow P_{min}=2+\sqrt{3}\)