K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(c; x+1); \(B\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) và \(C\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)

Khi đó, ta có \(P=\frac{OA}{a}+\frac{OB}{b}+\frac{OC}{c}\) trong đó a=BC, b=CA, c=AB

Gọi G là trọng tâm của tam giác ABC, ta có :

\(P=\frac{OA.GA}{a.GA}+\frac{OB.GB}{b.GB}+\frac{OC.GC}{c.GC}=\frac{3}{2}\left(\frac{OA.GA}{a.m_a}+\frac{OB.GB}{b.m_b}+\frac{OC.GC}{c.m_c}\right)\)

Trong đó \(m_a;m_b;m_c\) tương ứng là độ dài đường trung tuyến xuất phát từ A,B, C của tam giác ABC

Theo bất đẳng thức Côsi cho 2 số thực không âm, ta có

\(a.m_a=\frac{1}{2\sqrt{3}}.\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}\)

         \(\le\frac{1}{2\sqrt{3}}.\frac{3a^2\left(2b^2+2c^2-a^2\right)}{2}=\frac{a^2+b^2+c^2}{2\sqrt{3}}\)

bằng cách tương tự, ta cũng có \(b.m_b\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\) và \(c.m_c\le\frac{a^2+b^2+c^2}{2\sqrt{3}}\)

Suy ra \(P\ge\frac{3\sqrt{3}}{a^2+b^2+c^2}\left(OA.GA+OB.GB+OC.GC\right)\)  (1)

Ta có \(OA.GA+OB.GB+OC.GC\ge\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}.\)   (2)

         \(\overrightarrow{OA.}\overrightarrow{GA}+\overrightarrow{OB}.\overrightarrow{GB}+\overrightarrow{OC}.\overrightarrow{GC}\)

        \(=\left(\overrightarrow{OG}+\overrightarrow{GA}\right).\overrightarrow{GA}+\left(\overrightarrow{OG}+\overrightarrow{GB}\right).\overrightarrow{GB}+\left(\overrightarrow{OG}+\overrightarrow{GC}\right).\overrightarrow{GC}\)

        \(=\overrightarrow{OG}.\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+GA^2+GB^2+GC^2\)

        \(=\frac{4}{9}\left(m_a^2+m_b^2+m_c^2\right)\) \(=\frac{a^2+b^2+c^2}{3}\)        (3)

Từ (1), (2) và (3) suy ra \(P\ge\sqrt{3}\)

Hơn nữa, bằng kiểm tra trực tiếp ta thấy  \(P\ge\sqrt{3}\) khi x=0

Vậy min P=\(\sqrt{3}\)

 
NV
9 tháng 8 2021

\(\Leftrightarrow2y^3-6y^2+7y-3=-2x\sqrt{1-x}+2\sqrt{1-x}+\sqrt{1-x}\)

\(\Leftrightarrow2\left(y^3-3y^2+3y+1\right)+y-1=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)

\(\Leftrightarrow2\left(y-1\right)^3+y-1=2\left(\sqrt{1-x}\right)^3+\sqrt{1-x}\) (1)

Xét hàm \(f\left(t\right)=2t^3+t\)

\(f'\left(t\right)=6t^2+1>0\Rightarrow f\left(t\right)\) đồng biến

Nên (1) tương đương: \(y-1=\sqrt{1-x}\Rightarrow y=1+\sqrt{1-x}\)

\(\Rightarrow P=x+2\sqrt{1-x}+2=-\left(1-x-2\sqrt{1-x}+1\right)+4=-\left(\sqrt{1-x}-1\right)^2+4\le4\)

9 tháng 8 2021

⇒ P = x + 2 √ 1 − x + 2

= − ( 1 − x − 2 √ 1 − x + 1 ) + 4

= − ( √ 1 − x − 1 ) 2 + 4 ≤ 4

Cho xin một like đi các dân chơi à.

undefined

15 tháng 10 2020

2.

\(-x^3+3x^2=k\)

\(y=-x^3+3x^2\)

\(y'=-3x^2+6x\)

\(y'=0\Leftrightarrow x=0,x=2\)

Kẻ bảng biến thiên.

Đường thẳng y = k cắt đồ thị hàm số \(\Leftrightarrow0< k< 2\)

NV
15 tháng 10 2020

1.

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le1\\x\ge2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1^-}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=1\) là TCĐ

\(\lim\limits_{x\rightarrow2^+}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=2\) là TCĐ

\(\lim\limits_{x\rightarrow+\infty}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=2\Rightarrow y=2\) là TCN

Vậy ĐTHS có 3 tiệm cận

3.

\(\lim\limits_{x\rightarrow0}y=\infty\Rightarrow x=0\) là TCĐ

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x+9}+\sqrt{1-x}}{x}=-1\Rightarrow y=-1\) là TCN

ĐTHS có 2 tiệm cận

4.

\(\lim\limits_{x\rightarrow-2^+}y=\infty\Rightarrow x=-2\) là TCĐ

ĐTHS có 1 TCĐ (\(x=-3\) ko thuộc TXĐ của hàm số nên đó ko phải là TCĐ)

14 tháng 5 2016

\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)

Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)

             \(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\)  \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)

              \(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)

              \(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số

AH
Akai Haruma
Giáo viên
21 tháng 2 2017

Giải:

\(A=\sqrt{x^2+(y+1)^2}+\sqrt{x^2+(y-3)^2}\)

\(\Leftrightarrow A=\sqrt{x^2+(2x-1)^2}+\sqrt{x^2+(2x-5)^2}\)

ÁP dụng BĐT Cauchy-Schwarz:

\([x^2+(2x-1)^2](2^2+1)\geq (2x+2x-1)^2\Rightarrow \sqrt{x^2+(2x-1)^2}\geq \frac{|4x-1|}{\sqrt{5}}\)

\([x^2+(2x-5)^2](2^2+11^2)\geq (2x+55-22x)^2\Rightarrow \sqrt{x^2+(2x-5)^2}\geq \frac{|-20x+55|}{5\sqrt{5}}=\frac{|-4x+11|}{\sqrt{5}}\)

\(\Rightarrow A\geq \frac{|4x-1|+|-4x+11|}{\sqrt{5}}\geq \frac{|4x-1-4x+11|}{\sqrt{5}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)

Vậy \(A_{\min}=2\sqrt{5}\Leftrightarrow x=\frac{2}{3}\)



21 tháng 2 2017

thiếu y=-2/3 nhé cái này mk làm xong lâu r`, dù sao cx cảm ơn

8 tháng 5 2016

Áp dụng bất đẳng thức Cô - si, ta có :

   \(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)  (1)

Lại theo bất đẳng thức Cô si thì :

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\)    (2)

Vì \(xyz=1\) nên ta có :

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)

Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)

Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)

 

5 tháng 5 2016

Ta có : \(1+\left(\frac{x^4-1}{2x^2}\right)^2=\frac{x^8+2x^4+1}{4x^4}\) nên \(1+\sqrt{1+\left(\frac{x^4-1}{2x^2}\right)^2}=1+\frac{x^4+1}{2x^2}=\frac{\left(x^2+1\right)^2}{2x^2}\)

Do đó \(N=\frac{x^2+1}{x\sqrt{2}}\), thay \(x=\frac{1}{\sqrt{2}}\left(2^{\sqrt{2}}-2^{-\sqrt{2}}\right)\) vào ta được :

\(N=\frac{\frac{1}{2}\left(2^{\sqrt{2}}+2^{-\sqrt{2}}-2\right)+1}{\frac{1}{2}\left(2^{\sqrt{2}}+2^{-\sqrt{2}}\right)}=\frac{2^{2\sqrt{2}}+2^{-2\sqrt{2}}}{2^{\sqrt{2}}+2^{-\sqrt{2}}}\)