K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

\(a,A=2x^2+9y^2-6xy-6x-12y+2049\)

\(=x^2-6xy+9y^2+x^2-10x+25+4x-12y+2024\)

\(=\left(x-3y\right)^2+\left(x-5\right)^2+4\left(x-3y\right)+2024\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)

\(A_{min}=2020\Leftrightarrow\hept{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x=5\end{cases}\Rightarrow5-3y+2=0}\)

\(\Rightarrow3y=7\Leftrightarrow y=\frac{7}{3}\)

Vậy \(A_{min}=2020\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

b tương tự nhé

9 tháng 8 2016

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

9 tháng 8 2016

pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm

3 tháng 1 2019

\(A=2x^2+9y^2-6xy-6x-12y+2015\)

\(A=\left(x^2-6xy+9y^2\right)+x^2-6x-12y+2015\)

\(A=\left(x-3y\right)^2+4.\left(x-3y\right)-10x+x^2+2015\)

\(A=\left(x-3y\right)^2+4.\left(x-3y\right)+4+\left(x^2-10x+25\right)+1986\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1986\)

Vì \(\left(x-3y+2\right)^2\ge0;\left(x-5\right)^2\ge0\)

\(\Rightarrow A\ge1986\)

Dấu '=' xảy ra khi:

\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{7}{3}\\x=5\end{cases}}}\)

Vậy Amin= 1986 khi x = 5, y = 7/3

Chúc bạn học tốt!!!

5 tháng 6 2016

56% của 5789 kg là :

5789 x 56% = 3241,84 kg

Đáp số : 3241,84 kg

5 tháng 6 2016

\(A=9y^2-6xy-12y+2x^2-6x+2016\)

\(A=\left(3y\right)^2-2.3y\left(x+2\right)+\left(x+2\right)^2-\left(x^2+4x+4\right)+2x^2-6x+2016\)

\(A=\left(3y-\left(x+2\right)\right)^2+x^2-10x+2012\)

\(A=\left(3y-x-2\right)^2+\left(x-5\right)^2+1987\)

Vậy GTNN của A = 1987 khi x=5 và y=7/3.

24 tháng 7 2019

\(H=2x^2+9y^2-6xy-6y-12y+2004\)

\(\Rightarrow2H=4x^2+18y^2-12xy-12x-24y+4008\)

             \(=\left(4x^2-12xy+9y^2\right)+9y^2-12x-24y+4008\)

             \(=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+9y^2-42y+49+3950\)

             \(=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3950\ge3950\)

\(\Rightarrow2H\ge3950\)

\(\Rightarrow H\ge1975\)

Dấu "=" tại \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

24 tháng 7 2019

\(J=x^2+xy+y^2-3x-3y+1999\)

   \(=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}-3x-3y+1999\)

   \(=\left(x+\frac{y}{2}\right)^2-3\left(x+\frac{y}{2}\right)+\frac{9}{4}+3\left(\frac{y^2}{4}-\frac{y}{2}+\frac{1}{4}\right)+1996\)

    \(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2+1996\ge1996\)

Dấu "=" tại \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

29 tháng 3 2017

\(5x^2+y^2+4xy-14x-6y+2016=4x^2+4xy+y^2-6\left(2x+y\right)+9+x^2+2x+1+2006\)

\(=\left(2x+y\right)^2-6xy+9+\left(x+1\right)^2+2006\)

\(=\left(2x+y-3\right)^2+\left(x+1\right)^2+2006\)

lập luận nha gtnn là 2006

29 tháng 3 2017

5x^2+y^2+4xy-14x-6y+2016

=4x^2+x^2+y^2+y^2-y^2+4xy-14x-6y+9+49+1958

=4x^2+4xy+y^2+x^2-14x+49+y^2-6y+9-y^2+1958

=(4x^2+4xy+y^2)+(x^2-14x+49)+(y^2-6y+9)-y^2+1958

=(2x+y)^2+(x-7)^2+(y-3)^2-y^2+1958

Mà: + (2x+y)^2+(x-7)^2+(y-3)^2-y^2\(\ge\) 1958

Vậy GTNN là: 1958