K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

 \(A=x^2-4x+25=\left(x^2-4x+4\right)+21=\left(x-2\right)^2+21\ge21\)

Min A = 21 khi x -2 =0 hay x =2

29 tháng 6 2017

\(x^2-4x+25\)

\(=\left(x^2-4x+4\right)+21\)

\(=\left(x-2\right)^2+21\ge21\)

vậy giá trị nhỏ nhất của đa thức =21 khi x=2

29 tháng 6 2017

Đàm Thu Thủy

x2 - 4x + 25

= (x2 + 4x + 4) + 21

= (x - 2)2 + 21 \(\ge\) 21

Vậy giá trị nhỏ nhất của đa thức sẽ bằng 21 khi x = 2

14 tháng 11 2018

\(A=4x^2+4x+11\)

\(A=\left(2x\right)^2+2\cdot2x\cdot1+1^2+10\)

\(A=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy Amin = 10 khi và chỉ khi x = -1/2

14 tháng 11 2018

ai giúp mình với

22 tháng 9 2019

a) \(A=4x^2+4x+11\)

\(=\left(2x\right)^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Vậy \(A_{min}=10\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)

\(B=x^2-20x+101=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\ge1\)

Vậy \(B_{min}=1\Leftrightarrow x-10=0\Leftrightarrow x=10\)

20 tháng 9 2019

Quá dễ D:

\(B=4x^2-4x=4\left(x^2-x\right)=4\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=4\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=4\left(x-\frac{1}{2}\right)^2-1\ge-1\)

Vậy GTNN của B là -1\(\Leftrightarrow x=\frac{1}{2}\)

\(C=-x^2-x+1=-\left(x^2+x-1\right)\)

\(=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)

\(=-\left[\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\right]=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

...

20 tháng 9 2019

ukm bn thì dễ mk thì khó :*(

22 tháng 9 2015

A(x) = x^2 -2x +y^2 +4y +6 = x^2-2x +y^2 +4y +1^2 +2^2 +1

=(x^2 -2x.1 + 1^2) + ( y^2 +2.2y+2^2) +1

=(x-1)^2+ ( y+2)^2 +1

mà (x-1)^2 >_ 0 với mọi x

(y+2)^2 >_0 với mọi y

=> GTNN của A(x) là 1

Tick cho tớ nha

1 tháng 7 2019

\(A=x^2+4y^2-2xy+4x-10y+2020.\)

\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)

\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)

\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)

\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)

\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

1 tháng 7 2019

\(B=8x^2+y^2-4xy-12x+2y+30\)

\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)

\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)

\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)

\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)

\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)

19 tháng 9 2018

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = \(-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                        => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

                           => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                            => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2