Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(M=\left|x-2002\right|+\left|x-2001\right|\)
\(=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Vậy \(MinM=1\) khi \(\orbr{\begin{cases}x=2002\\x=2001\end{cases}}\)
Áp dụng đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|.\) dấu = khi \(AB\ge0\)
Mà \(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)
\(\Rightarrow M=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|\)
\(\Rightarrow M\ge\left|-1\right|\Rightarrow M\ge1\)dấu = khi \(\left(x-2002\right)\left(2001-x\right)\ge0\)
Vậy \(M_{min}=1\)
A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3
⇒Amin=−3⇒Amin=−3 khi x=2x=2
B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10
⇒Bmin=10⇒Bmin=10 khi x=−12x=−12
C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)
=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36
⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5
D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21
⇒Cmax=21⇒Cmax=21 khi x=−4x=−4
E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5
⇒Emax=5⇒Emax=5 khi x=2
Đặt \(A=\left|x-2002\right|+\left|x-2001\right|\)
\(A=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2002\right)\left(2001-x\right)\ge0\Leftrightarrow2001\le x\le2002\)
TA CÓ
\(\left(X-1\right)^2\ge0\)VỚI MỌI X \(\in\)R
\(\left(Y+3\right)^2\ge0\)VỚI MỌI Y\(\in\)R
=>\(\left(X-1\right)^2+\left(Y+3\right)^2+2002\ge2002\) VỚI MỌI X,Y \(\in\)R
=>BIỂU THỨC M ĐẠT GIA TRỊ NHỎ NHẤT LÀ 2002 KHI \(\left(X-1\right)^2=0\) VÀ \(\left(Y+3\right)^2=0\)=>X=1;Y=-3
Ta có : / 2001 - x / + / x - 1 / \(\ge\)/ 2001 - x + x - 1 /
/ 2001 - x / + / x - 1 / > / 2000 /
/ 2001 - x / + / x - 1 / > 2000
Vậy giá trị nhỏ nhất của A là 2000 khi x = 1
Chúc bạn học tốt!!!!!
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000
k) Vì \(\left|4x-3\right|\ge0\left(\forall x\right);\left|5y+7,5\right|\ge0\left(\forall y\right)\)
\(\Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}}\)
Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -3/2
n) Ta có:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=1\)
Dấu "=" xảy ra khi \(\left(x-2002\right)\left(2001-x\right)\ge0\)
<=> x lớn hơn hoặc bằng 2002
Hoặc x bé hơn hoặc bằng 2001
Vậy MMin =1