K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

Ta có:\(M=\left|x-2002\right|+\left|x-2001\right|\)

\(=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)

Vậy \(MinM=1\) khi \(\orbr{\begin{cases}x=2002\\x=2001\end{cases}}\)

18 tháng 7 2016

Áp dụng đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|.\) dấu = khi \(AB\ge0\)

Mà \(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\)

\(\Rightarrow M=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|\)

\(\Rightarrow M\ge\left|-1\right|\Rightarrow M\ge1\)dấu = khi \(\left(x-2002\right)\left(2001-x\right)\ge0\)

Vậy \(M_{min}=1\) 

10 tháng 12 2021

A,B,C riêng nha

10 tháng 12 2021

A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3

⇒Amin=−3⇒Amin=−3 khi x=2x=2

B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10

⇒Bmin=10⇒Bmin=10 khi x=−12x=−12

C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)

=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36

⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5

D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21

⇒Cmax=21⇒Cmax=21 khi x=−4x=−4

E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5

⇒Emax=5⇒Emax=5 khi x=2

16 tháng 7 2018

k) Vì \(\left|4x-3\right|\ge0\left(\forall x\right);\left|5y+7,5\right|\ge0\left(\forall y\right)\)

\(\Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}}\)

Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -3/2

n) Ta có: 

\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=1\)

Dấu "=" xảy ra khi \(\left(x-2002\right)\left(2001-x\right)\ge0\) 

<=> x lớn hơn hoặc bằng 2002

Hoặc x bé hơn hoặc bằng 2001

Vậy MMin =1

14 tháng 7 2019

Đặt \(A=\left|x-2002\right|+\left|x-2001\right|\)

\(A=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2002\right)\left(2001-x\right)\ge0\Leftrightarrow2001\le x\le2002\)

16 tháng 7 2019

Đặt A=|x−2002|+|x−2001|

\(\Rightarrow\)A=|x−2002|+|2001−x| ≥ |x−2002+2001−x| = |−1| =1

Dấu "=" xảy ra ⇔(x−2002)(2001−x) ≥ 0 ⇔ 2001 ≤ x ≤ 2002

chúc bạn học tốt !

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

16 tháng 11 2017

2000 nha  

22 tháng 12 2017

Ta có : / 2001 - x / + / x  - 1 / \(\ge\)/ 2001 - x + x - 1 /

/ 2001 - x / + / x - 1 / > / 2000 /

/ 2001 - x / + / x - 1 / >  2000 

 Vậy giá trị nhỏ nhất của A là 2000 khi x = 1

Chúc bạn học tốt!!!!!

24 tháng 2 2017

TA CÓ

\(\left(X-1\right)^2\ge0\)VỚI MỌI X \(\in\)R

\(\left(Y+3\right)^2\ge0\)VỚI MỌI Y\(\in\)R

=>\(\left(X-1\right)^2+\left(Y+3\right)^2+2002\ge2002\) VỚI MỌI X,Y \(\in\)R

=>BIỂU THỨC M ĐẠT GIA TRỊ NHỎ NHẤT LÀ 2002 KHI \(\left(X-1\right)^2=0\) VÀ \(\left(Y+3\right)^2=0\)=>X=1;Y=-3