K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2024

C= ( 2x+y)^2 + 2(2x+y) + 1 + y^2 + 4y +4 + 12

C= (2x+y+1)^2 +( y+2)^2 + 12

Từ đó suy ra min C là 12 khi y = -2; x= 1/2

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

3 tháng 11 2024

H= (2x+y)^2 - 2(2x+y) + 1+ y^2 - 2y + 1 + 1

H= (2x+y+1)^2 + (y+2)^2 + 1 

Min h là 1 

3 tháng 11 2017

Phân tích đa thức thành nhân tử có dạng (a+b)2 + c trong đó c là 2013 và vận dụng cách tìm GTNN đã học (Thầy giáo Đặng Trọng Sơn)

7 tháng 11 2017

thầy chỉ hướng dẫn cho e như thế thôi e tự tìm cách giải mới giỏi lên được

27 tháng 9 2016

a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5

GTNN A = 4,97

b) = (2x +y)2 + y2 + 2018

GTNN B = 2018 khi x=0;y=0

c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10

GTLN C = 169/16

d) = -(x-y)2 - (2x +1) +1 + 2016

GTLN D = 2017

(trg bn cho bài khó dữ z, làm hại cả não tui)

29 tháng 9 2016

cảm ơn nhiều lắm đấy

14 tháng 3 2018

\(Q=x^2+2y^2+4x+6y+1\)

\(Q=\left(x^2+4x+4\right)+2\left(y^2+3y+\frac{9}{4}\right)-\frac{15}{2}\)

\(Q=\left(x+2\right)^2+2\left(y+\frac{3}{2}\right)^2-\frac{15}{2}\ge-\frac{15}{2}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=-2\\y=-\frac{3}{2}\end{cases}}\)

9 tháng 8 2018

Đặt  \(K=4x^2+2y^2+4xy-16x-12y+5\)

\(K=\left(4x^2+4xy+y^2\right)+y^2-16x-12y+5\)

\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).4+16\right]+\left(y^2-4y+4\right)-15\)

\(K=\left(2x+y-4\right)^2+\left(y-2\right)^2-15\)

Mà  \(\left(2x+y-4\right)^2\ge0\forall x;y\)

      \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow K\ge-15\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy  \(K_{Min}=-15\Leftrightarrow\left(x;y\right)=\left(1;2\right)\)

22 tháng 9 2021

đang cần gấp ạ

 

22 tháng 9 2021

a) \(A=-x^2+2x=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\)

\(maxA=1\Leftrightarrow x=1\)

b) \(B=\left(2-3x\right)\left(3+2x\right)=-6x^2-5x+6=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{169}{24}=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{169}{24}\le\dfrac{169}{24}\)

\(minB=\dfrac{169}{24}\Leftrightarrow x=-\dfrac{5}{12}\)

c) \(C=4xy-4x-2y-4x^2-2y^2-3=-\left[4x^2-4x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-4y+4\right)-6=\left(2x-y+1\right)^2+\left(y-2\right)^2-6\le-6\)

\(minC=-6\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=2\end{matrix}\right.\)