K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

24 tháng 8 2017

Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5 
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!

24 tháng 8 2017

a)\(A=x^2-8x+9\)

   \(A=x^2-8x+16-7\)

    \(A=\left(x-4\right)^2-7\le-7\)

        Dấu = xảy ra khi x - 4 = 0 ; x= 4

vậy Min A = -7 khi x =4

23 tháng 8 2019

2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4 

Ta luôn có: (x - 3)2 \(\ge\)\(\forall\)x

=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3

Vậy MinA = -4 tại  x = 3

Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3

Ta luôn có: 4(x - 1)2 \(\ge\)\(\forall\)x

=> 4(x - 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

vậy MinB = 3 tại x = 1

Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8

Ta luôn có: 2(x + 1)2 \(\ge\)\(\forall\)x

=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinC = -8 tại x = -1

23 tháng 8 2019

1/

\(A=x^2-6x+5\)

\(A=x^2-2\cdot3x+3^2-3^2+5\)

\(A=\left(x-3\right)^2-3^2+5\)

\(A=\left(x-3\right)^2-9+5\)

\(A=\left(x-3\right)^2-4\)

mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)

\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)

với \(\left(x-3\right)^2=0;x=3\)

\(B=4x^2-8x+7\)

\(B=4\left(x^2-2x+\frac{7}{4}\right)\)

\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)

\(B=4\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)

\(\Rightarrow GTNNB=3\)

với \(\left(x-1\right)^2=0;x=1\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x-3\right)\)

\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)

\(C=\left(x+1\right)^2-8\)

\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow GTNNC=-8\)

với \(\left(x+1\right)^2=0;x=-1\)

23 tháng 8 2019

2.

c) \(C=2x^2+4x-6=2\left(x^2+2x+1\right)-8\)

\(=2\left(x+1\right)^2-8\ge-8\forall x\)

Dấu"=" xảy ra<=> \(2\left(x+1\right)^2=0\Leftrightarrow x=-1\)

3.

c) \(C=-3x^2-6x+9=-3\left(x^2+2x+1\right)+12\)

\(=-3\left(x+1\right)^2+12\le12\forall x\)

Dấu "=" xảy ra<=> \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)

23 tháng 8 2019

\(2,GTNN\)

\(A=x^2-6x+5=x^2+6x+9-4\)

\(=\left(x+3\right)^2-4\ge-4\)

\(A_{min}=-4\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)

\(B=4x^2-8x+7=4\left(x^2-2x+\frac{7}{4}\right)\)

\(=4\left(x^2-2x+1+\frac{3}{4}\right)=4\left(x-1\right)^2+3\ge3\)

\(\Rightarrow B_{min}=3\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

\(C=2x^2+4x-6=2\left(x^2+2x-3\right)\)

\(=2\left(x^2+2x+1-4\right)=2\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow C_{min}=-8\Leftrightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)

23 tháng 8 2019

\(3,GTLN\)

\(A=-x^2+2x-3=-\left(x^2-2x+3\right)\)

\(=-\left(x^2-2x+1-4\right)=-\left(x-1\right)^2+4\le4\)

\(A_{max}=4\Leftrightarrow-\left(x-1\right)^2=0\Rightarrow x=1\)

\(B=-9x^2+6x-4=-\left[9x^2-6x+4\right]\)

\(=-\left[\left(3x\right)^2-6x+1+3\right]=-\left(3x-1\right)^2-3\)

\(B_{max}=-3\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

\(C=-3x^2-6x+9=-3\left(x^2+2x-3\right)\)

\(=-3\left(x^2+2x+1-4\right)=-3\left(x+1\right)^2+12\)

\(C_{max}=12\Leftrightarrow-3\left(x+1\right)^2=0\Rightarrow x=-1\)

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

8 tháng 7 2018

\(4x^2+8x+5=\)  \(\left(2x\right)^2+2.x.2.2+4+1\)

                             \(=\left(2x+2\right)^2+1\)

với \(x=49\)=> \(\left(49+2\right)^2+1=2602\)

\(x^3+3x^2+3x+1\) \(=\left(x+1\right)^3\)

với \(x=99\)=> \(\left(99+1\right)^3=1000000\)

mấy cau kia làm tương tự nha

8 tháng 7 2018

Mk chỉ phân tích ra thôi,cn đâu bn tự thay số vào nha! 

\(a,A=4x^2+8x+5\)

\(=4x^2+8x+4+1\)

\(=\left(2x+2\right)^2+1\)

\(b,B=x^3+3x^2+3x+1\)

\(=\left(x+1\right)^3\)

\(c,C=x^3-9x^2+27x-26\)

\(=\left(x^3-9x^2+27x-27\right)+1\)

\(=\left(x-3\right)^3+1\)

\(d,D=\left(2x-3\right)^2-\left(4x-6\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3-2x+5\right)^2\)

\(=4\)

Vì giá trị của bt ko phụ thuộc vào biến nên bt luôn có giá trị là 4

26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2