K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

13 tháng 7 2016

bạn có thể nói rõ cách làm không

8 tháng 8 2017

\(M=x^2+5y^2-4xy+2x-8y+2021\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)

\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)

Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

23 tháng 11 2017

Ta có:\(A=x^2+5y^2+2x-4xy-10y+14\)

\(=(x^2+4y^2+1-4xy-4y+2x)+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Do \(\left(x-2y+1\right)^2\ge0\left(\forall x;y\right)\)

\(\left(y-3\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\left(\forall x;y\right)\)(1)

Mà đề bài lại cho \(A=0\) (2)

(1); (2) Suy ra không có giá trị của x;y thỏa mãn đề bài

7 tháng 11 2021

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

7 tháng 11 2021

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1

18 tháng 7 2018

\(A=\left(x^2+4xy+4y^2\right)+2\left(x+2y\right)+y^2-4y+12\)

\(=\left(x+2y\right)^2+2\left(x+2y\right)+1+y^2-4y+4+7\)

\(=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5;y=2\)

18 tháng 7 2018

\(A=x^2+5y^2+4xy+2x+12\)

\(\Rightarrow A=x^2+4xy+2x+4y+4y^2+1+y^2-4y+4+7\)

\(\Rightarrow A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Vậy giá trị nhỏ nhất  của biểu thức A =7 

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

27 tháng 1 2022

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)

28 tháng 12 2016

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

27 tháng 12 2016

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam