K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(A=\left(x^2+4xy+4y^2\right)+2\left(x+2y\right)+y^2-4y+12\)

\(=\left(x+2y\right)^2+2\left(x+2y\right)+1+y^2-4y+4+7\)

\(=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5;y=2\)

18 tháng 7 2018

\(A=x^2+5y^2+4xy+2x+12\)

\(\Rightarrow A=x^2+4xy+2x+4y+4y^2+1+y^2-4y+4+7\)

\(\Rightarrow A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Vậy giá trị nhỏ nhất  của biểu thức A =7 

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

8 tháng 8 2017

\(M=x^2+5y^2-4xy+2x-8y+2021\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)

\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)

Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

17 tháng 7 2018

\(R=x^2-4xy+5y^2+10x-22y+28\)

\(R=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(R=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\left(y^2-2y+1\right)+2\)

\(R=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow R\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy ...

7 tháng 11 2021

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

7 tháng 11 2021

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4

= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4

= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)

\(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy Min A = 91/4 <=> x = 1/2 ; y = -1

2 tháng 12 2019

Có P = x2 + 5y2 + 4xy + 6x + 16y + 32

         = [(x2 + 4xy + 4y2) + 6x + 12y + 9] + (y2 + 4y + 22) + 19

         = [(x + 2y)2 + 2(x + 2y).3 + 32 ] + (y + 2)2 + 19

         = (x + 2y + 3)2 + (y + 2)2 + 19

Thấy (x + 2y + 3)2 ≥ 0 với mọi x; y

         (y + 2)2 ≥ 0 với mọi y

=> (x + 2y + 3)2 + (y + 2)2 ≥ 0 với mọi x; y

=> (x + 2y + 3)2 + (y + 2)2 + 19 ≥ 19 với mọi x; y

=> P ≥ 19 với mọi x; y

Dấu "=" xảy ra khi x + 2y + 3 = 0 và y + 2 = 0

Bn tự giải tiếp nha, mk ko biết có nhầm chỗ nào ko nhưng cách lm như vậy đó

29 tháng 8 2020

Bài làm:

Ta có: \(x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min = 2 khi x = -3 và y = 1

29 tháng 8 2020

Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)

\(\Rightarrow A=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Vì \(\left(x-2y+5\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2+5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+3=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)