Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|2x+1\right|+5\)
Ta có: \(\left|2x+1\right|\ge0,\forall x\)
\(\Rightarrow\left|2x+1\right|+5\ge5,\forall x\)
Dấu "\(=\)" xảy ra \(\Leftrightarrow\left|2x+1\right|=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy, Giá trih nhỏ nhất\(minA=5\)\(\Leftrightarrow x=\frac{-1}{2}\)
t.ick và chọn câu trả lời của mình nhé
Chúc bạn học tốt!
A = |2x - 1| + 5
có |2x - 1| ≥ 0 => |2x - 1| + 5 ≥ 5
=> A ≥ 5
xét A = 5 <=> |2x - 1| = 0 <=> x = 1/2
vậy_
B = 3 - |1 - x|
có |1-x| ≥ 0 => -|1 - x| ≤ 0
=> 3 - |1 - x| ≤ 3
=> B ≤ 3
xét B = 3 <=> |1-x| = 0 <=> x = 1
vậy_
\(2\left|2x-\frac{5}{7}\right|-1\ge-1\)
Dấu ''='' xảy ra khi \(x=\frac{5}{7}:2=\frac{5}{14}\)
Vậy GTNN của biểu thức trên bằng -1 tại x = 5/14
\(2.\left|2x-\frac{5}{7}\right|-1\ge-1\)
dấu "=" xảy ra khi và chỉ khi \(2x-\frac{5}{7}=0< =>x=\frac{5}{14}\)
vậy \(MIN=-1\)
Câu 1: giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
ta có |a|+|b|\(\ge\text{|a+b|}\) dấu bằng xảy ra <=>a>0 và b>0
D=|x2+x+3|+|x2+x-6|=|x2+x+3|+|-x2-x+6|>|x2+x+3-x2-x+6|=9
minD=9<=>x2+x+3>0 dúng
x2+x-6>0 roi tu tinh x
\(2\left|2x-\frac{5}{7}\right|-1\)
Vì \(2\left|2x-\frac{5}{7}\right|\ge0\forall x\)
\(\Rightarrow2\left|2x-\frac{5}{7}\right|-1\ge-1\forall x\)
Vậy \(2\left|2x-\frac{5}{7}\right|-1\) đạt giá trị nhỏ nhất là \(-1\Leftrightarrow2x-\frac{5}{7}=0\Leftrightarrow2x=\frac{5}{7}\Leftrightarrow x=\frac{5}{14}\)