K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(A=\left|2018-x\right|+\left|x-2017\right|\ge2018-x+x-2017=1\)

dấu = xãy ra khi \(\left(2018-x\right)\left(x-2017\right)\ge0\Leftrightarrow2017\le x\le2018\)

vậy \(A_{min}=1\) khi \(2017\le x\le2018\)

\(B=\left|x-1\right|+\left|2019-x\right|+\left|x-1999\right|\ge x-1+2019-x+\left|x-1999\right|\)

\(B\ge\left|x-1999\right|+2020\ge2020\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x-1\ge0\\2019-x\ge0\\x-1999=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2019\\x=1999\end{matrix}\right.\Rightarrow x=1999\)

vậy \(B_{min}=2020\) khi x=1999

4 tháng 8 2017

\(A=\left|2018-x\right|+\left|2017-x\right|\)

\(A=\left|2018-x\right|+\left|x-2017\right|\)

Áp dụng BĐT:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow A\ge\left|2018-x+x-2017\right|\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2018-x\ge0\Rightarrow x\le2018\\x-2017\ge0\Rightarrow x\ge2017\end{matrix}\right.\\\left\{{}\begin{matrix}2018-x< 0\Rightarrow x< 2018\\x-2017< 0\Rightarrow x< 2017\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow2017\le x\le2018\)

B tương tự

11 tháng 4 2018

\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=1-\dfrac{1}{\left|x-2017\right|+2019}\)

\(\left|x-2017\right|\ge0\Rightarrow\left|x-2017\right|+2019\ge2019\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\)

\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2019}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

Dấu "=" xảy ra <=> \(\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{Min}=\dfrac{2018}{2019}\) khi x = 2017

11 tháng 4 2018

cảm ơn bn nhiều

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3

24 tháng 1 2017

Đặt bẫy hả

10 tháng 2 2019

Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình

13 tháng 2 2020

\(A=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

\(\Rightarrow A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\ge\left|x-2017+x-2018+2019-x+2020-x\right|\)

\(\Rightarrow A\ge\left|4\right|\)

\(\Rightarrow A\ge4.\)

Dấu '' = '' xảy ra khi:

\(\left(x-2017\right).\left(x-2018\right).\left(2019-x\right).\left(2020-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2017\ge0\\x-2018\ge0\\2019-x\ge0\\2020-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2017\le0\\x-2018\le0\\2019-x\le0\\2020-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2017\\x\ge2018\\x\le2019\\x\le2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2017\\x\le2018\\x\ge2019\\x\ge2020\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2018\le x\le2019\\x\in\varnothing\end{matrix}\right.\)

Vậy \(MIN_A=4\) khi \(2018\le x\le2019.\)

Chúc bạn học tốt!