K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

1) \(A=23+\left|2x-\frac{1}{3}\right|\)

Ta có:  \(\left|2x-\frac{1}{3}\right|\ge0\forall x\)

\(\Rightarrow\left|2x-\frac{1}{3}\right|+23\ge23\forall x\)

\(A=23\Leftrightarrow\left|2x-\frac{1}{3}\right|=0\Leftrightarrow2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)

Vậy Amin=23 \(\Leftrightarrow x=\frac{1}{6}\)

Câu b, câu c tương tự

2)  \(\left|x-3,5\right|+\left|y-1,3\right|=0\) 

Ta có:  \(\orbr{\begin{cases}\left|x-3,5\right|\ge0\forall x\\\left|y-1,3\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\forall x\)

Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\y=1,3\end{cases}}}\)

Vậy x=3,5 ; y=1,3

15 tháng 6 2018

thanks nhiều nha

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

2 tháng 7 2019

\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)

\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)

\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow x\in\left\{0;-5\right\}\)

2 tháng 7 2019

\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)

\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)

Đặt \(x^2-9x+14=a\)

\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)

\(=a^2-36+2018=a^2+1982\)

\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)

\(\Rightarrow x^2-9x+14=0\)

\(\Rightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Rightarrow x\in\left\{2;7\right\}\)

9 tháng 7 2017

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)

\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra khi x=-3;y=4

30 tháng 10 2017

2015 nha bạn.

22 tháng 2 2019

\(A=2x^2+2xy+y^2-2x+2y+1\)

\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)

\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)

\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)

Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy....

2 tháng 7 2018

\(N=2x^2+y^2+2xy-4x-2y+3\)

\(N=\left(x^2+2xy+y^2\right)+x^2-4x-2y+3\)

\(N=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)+1\)

\(N=\left(x+y-1\right)^2+\left(x-1\right)^2+1\)

Mà  \(\left(x+y-1\right)\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow N\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(N_{Min}=1\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

2 tháng 7 2018

\(N=2x^2+y^2+2xy-4x-2y\)\(+3\)

\(=\left(x^2+2xy+y^2\right)+x^2-2\left(2x+y\right)+3\)

\(=\left[\left(x+y\right)^2-2\left(2x+y\right)+1\right]+2+x^2\)

\(=\left(x+y+1\right)^2+x^2+2\)

\(Do\)\(\left(x+y+1\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)\(;\)\(y\)

\(x^2\)\(\ge\)\(0\)\(\forall\)\(x\)

=.>\(\left(x+y+1\right)^2+x^2+2\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)

=>\(N\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)

Dấu = xảy ra khi: 

\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\x^2=0\end{cases}}\)

=>\(\hept{\begin{cases}x+y+1=0\\x=0\end{cases}}\)

=>\(\hept{\begin{cases}x+y=-1\\x=0\end{cases}}\)

=>\(\hept{\begin{cases}y=-1\\x=0\end{cases}}\)

Vậy \(N_{min}\)\(=\)\(2\)khi \(y=-1\)\(;\)\(x=0\)

Chúc pạn họk tốt~~~!!! :3