Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\left|4,3-x\right|\ge0\)nên GTNN của P =3,7 \(\Leftrightarrow4,3-x=0\Rightarrow x=4,3\)
b) Vì \(\left|2x-1,5\right|\ge0\)nên GTLN của Q=5,5 \(\Leftrightarrow2x-1,5=0\Rightarrow x=0,75\)
Ta có : \(\left|4,3-x\right|\ge0\)
\(\Rightarrow A\ge3,7+0\)
Vậy dấu "=" xảy ra khi Min A = 3,7 và x = 4,3
a)Ta có: |4,3-x|>=0(với mọi x)
nên 3,7+|4,3-x|>=3,7 hay P>=3,7
Do đó, GTNN của P là 3,7 khi:|4,3-x|=0
4,3-x=0
x=4,3-0
x=4,3
b)Ta có: |2x-1,5|>=0(với mọi x)
-|2x-1,5|<=0
nên 5,5-|2x-1,5|<=5,5 hay Q<=5,5
Do đó, GTLN của Q là 5,5 khi:|2x-1,5|=0
2x-1,5=0
2x=0+1,5
2x=1,5
x=1,5/2=15/2=7,5
Vậy GTLN của Q là 5,5 khi x=7,5
a) giá trị nhỏ nhất là 3, 7
b) giá trị lớn nhất là 5, 5
k cho mk nha!
a) giá trị nhỏ nhất là 3, 7
b) giá trị lớn nhất là 5, 5
k cho mk nha!
\(A=\frac{x}{\left(x+4\right)^2}\)
Đặt \(x+4=y\Leftrightarrow x=y-4\) \(\left(y\ne0\right)\)
\(A=\frac{y-4}{y^2}\)
\(A=\frac{y}{y^2}-\frac{4}{y^2}\)
\(-A=\left(\frac{2}{y}\right)^2-\frac{1}{y}\)
\(-A=\left[\left(\frac{2}{y}\right)^2-\frac{1}{y}+\left(\frac{1}{4}\right)^2\right]-\frac{1}{16}\)
\(-A=\left(\frac{2}{y}-\frac{1}{4}\right)^2-\frac{1}{16}\)
Do : \(\left(\frac{2}{y}-\frac{1}{4}\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge-\frac{1}{16}\)
\(\Leftrightarrow A\le\frac{1}{16}\)
Dấu " = " xảy ra khi :
\(\frac{2}{y}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{2}{y}=\frac{1}{4}\)
\(\Leftrightarrow y=8\)
Lại có : \(x=y-4\Rightarrow x=4\)
Vậy \(A_{Max}=\frac{1}{16}\Leftrightarrow x=4\)
\(A=3,7+\left|4,3-x\right|\)
\(\Rightarrow3,7+\left|4,3-x\right|\ge3,7;P\ge3,7\)
Vậy \(GTNN\left(P\right)=3,7\)nếu \(\left|4,3-x\right|=0\)
\(4,3-x=0\)
\(x=4,3\)
<=> x=4,3