K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

\(P=2x\sqrt{3-x^2}\le x^2+3-x^2=3\)

Vậy GTLN là 3 đạt được khi \(x^2=\frac{3}{2}\)

18 tháng 7 2019

a) Để A có nghĩa :

\(\Rightarrow\sqrt{2x+3-x^2\: }\Leftrightarrow2+\sqrt{2x+3-x^2}\ge2\forall x\) 

\(\Rightarrow\sqrt{-\left(x-1\right)^2+4}\ge0\) 

\(\Leftrightarrow-\left(x-1\right)^2\ge-4\) 

\(\Leftrightarrow\left(x-1\right)^2\le4\) 

\(\Rightarrow3\ge x\ge-1\) 

Vậy.....

9 tháng 7 2016

a) Ta có : \(A=\sqrt{x}-2x+2=-2\left(x-2\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{8}+2=-2\left(\sqrt{x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)

Vậy Max A = \(\frac{17}{8}\Leftrightarrow\sqrt{x}=\frac{1}{4}\Leftrightarrow x=\frac{1}{16}\)

b) Ta phải có \(x\le2\)

Đặt \(y=\sqrt{2-x},y\ge0\Rightarrow x=2-y^2\)

\(\Rightarrow B=x+\sqrt{2-x}=2-y^2+y=-\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+2+\frac{1}{4}=-\left(y-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

Do đó Max B = \(\frac{9}{4}\Leftrightarrow y=\frac{1}{2}\Leftrightarrow x=\frac{7}{4}\)