Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)
\(p=\sqrt{x}\left(1-\sqrt{x}\right)=-x+\sqrt{x}=-\left(\sqrt{x}\right)^2+2\sqrt{x}\cdot\frac{1}{2}-\frac{1}{4}+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\Leftrightarrow x=\sqrt{\frac{1}{2}}\)
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
A = 4 - \(x^2\) + 2\(x\)
A = - (\(x^2\) - 2\(x\) + 1) + 5
A = - (\(x-1\))2 + 5
Vì (\(x-1\))2 ≥ 0 ∀ \(x\) ⇒ - (\(x-1\))2 ≤ 0 ∀ \(x\) ⇒ -(\(x-1\))2 + 5 ≤ 5 ∀\(x\)
Dấu bằng xảy ra khi \(x-1\) = 0 ⇒ \(x=1\)
Vậy Amax = 5 khi \(x=1\)