Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
a) A = 4x2 + 4x +11
=> (2x)2+2.2x+1+11-1
=> (2x+1)2+10
do (2x+1)2 \(\dfrac{>}{ }\) 0 vs mọi x
(2x+1)2 +10 \(\dfrac{>}{ }\)10 vs mọi x
GTNNA=10 khi
2x+1=0
=>x=\(\dfrac{-1}{2}\)
a)\(A=4x^2+4x+11\)
\(\Leftrightarrow A=4x^2+4x+1+10\)
\(\Leftrightarrow A=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\)
Nên \(\left(2x+1\right)^2+10\ge10\)
Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
b) \(B=2x-2x^2-5\)
\(\Leftrightarrow B=-2x^2+2x-5\)
\(\Leftrightarrow B=-2x^2+2x-\dfrac{1}{2}-\dfrac{9}{2}\)
\(\Leftrightarrow B=-\left(2x^2-2x+\dfrac{1}{2}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
Do đó \(-\left(x-\dfrac{1}{2}\right)^2\le0\)
Nên \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)
Vậy GTLN của \(B=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=4x^2-12x\)
\(\Leftrightarrow C=4x^2-12x+9-9\)
\(\Leftrightarrow C=\left(4x^2-12x+9\right)-9\)
\(\Leftrightarrow C=\left(2x-3\right)^2-9\)
Vì \(\left(2x-3\right)^2\ge0\)
Nên \(\left(2x-3\right)^2-9\ge-9\)
Vậy GTNN của \(C=-9\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
d) \(D=5-x^2+2x-4y^2-4y\)
\(\Leftrightarrow D=7-1-1-x^2+2x-4y^2-4y\)
\(\Leftrightarrow D=-x^2+2x-1-4y^2-4y-1+7\)
\(\Leftrightarrow D=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(\Leftrightarrow D=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)
Vậy GTLN của \(D=7\) khi \(\left\{{}\begin{matrix}x-1=0\Leftrightarrow x=1\\2y+1=0\Leftrightarrow y=\dfrac{-1}{2}\end{matrix}\right.\)
C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2
C2. ( x + 2 )2 = ( 2x - 1 )2
<=> ( x + 2 )2 - ( 2x - 1 )2 = 0
<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0
<=> [ 3x + 1 ][ 3 - x ] = 0
<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)
b) ( x + 2 )2 - x + 4 = 0
<=> x2 + 4x + 4 - x + 4 = 0
<=> x2 - 3x + 8 = 0
Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x
=> Phương trình vô nghiệm
C3. a) A = x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 , đạt được khi x = 2
b)B = x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy BMin = 3/4, đạt được khi x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy DMin = 2 , đạt được khi x = y = -1/2
C4. a) ( Cái này tìm được Min k tìm được Max )
A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = -6 , đạt được khi x = 2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9 , đạt được khi x = -1
d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )
C5. a) A = 25x2 - 20x + 7
A = 25x2 - 20x + 4 + 3
A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )
b) B = 9x2 - 6xy + 2y2 + 1
B = ( 9x2 - 6xy + y2 ) + y2 + 1
B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )
c) C = x2 - 2x + y2 + 4y + 6
C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1
C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )
d) D = x2 - 2x + 2
D = x2 - 2x + 1 + 1
D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )
A = 4x - x2 + 3
A = -x2 + 4x + 3
A = - (x2 - 4x - 3)
A = - (x - 2)2 + 7 lớn hơn hoặc bằng 7.
Dấu "=" xảy ra khi x - 2 = 0 => x = 2
Vậy...
\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
\(=-\left(x-2\right)^2+7\le7\)
Vậy \(A_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(B=x-x^2=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) Ta có: C = x2 + x - 2 = (x2 + x + 1/4) - 9/4 = (x + 1/2)2 - 9/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 - 9/4 \(\ge\)-9/4 \(\forall\)x
Dấu "=" xảy ra khi: x + 1/2 = 0 <=> x = -1/2
Vậy Min của C = -9/4 tại x = -1/2
b) Ta có: D = x2 + y2 + x - 6y + 5 = (x2 + x + 1/4) + (y2 - 6y + 9) - 17/4 = (x + 1/2)2 + (y - 3)2 - 17/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
(y - 3)2 \(\ge\)0 \(\forall\)y
=> (x + 1/2)2 + (y - 3)2 - 17/4 \(\ge\)-17/4 \(\forall\)x; y
Dấu'=" xảy ra khi: \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
Vậy Min của D = -17/4 tại \(\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
c) Ta có: E = x2 + 10y2 - 6xy - 10y + 26 = (x2 - 6xy + 9y2) + (y2 - 10y + 25) + 1 = (x - 3y)2 + (y - 5)2 + 1
Ta luôn có: (x - 3y)2 \(\ge\)0 \(\forall\)x;y
(y - 5)2 \(\ge\)0 \(\forall\)y
=> (x - 3y)2 + (y - 5)2 + 1 \(\ge\) 1 \(\forall\)x; y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3y\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.5=15\\y=5\end{cases}}\)
Vậy Min của E = 1 tại x = 15 và y = 5
d) 4x - x2 + 5
= -x2 + 4x + 5
= -(x2 - 4x + 4 - 4) + 5
= -(x - 2)2 + 9
Ta có: -(x - 2)2 ≤ 0 với ∀x
Nên: -(x - 2)2 + 9 ≤ 9 với ∀x
Dấu "=" xảy ra ⇔ -(x - 2)2 = 0
x - 2 = 0
x = 2
Vậy GTLN của biểu thức trên là 9 khi x = 2
Các câu còn lại bạn cứ dựa vào câu trên mà làm nhé!!!!
Bạn có bị sai đề không bởi vì GTLN phải có dấu trừ trước x2 chứ :v