K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. x = 2

b. x = -1

c. y = 2

d. x = 1

e. y= -2018

21 tháng 2 2019

a)\(\left(x-2\right)\left(x-3\right)=0\)

Hoặc \(x-2=0\Leftrightarrow x=2\)(nhận)

Hoặc \(x-3=0\Leftrightarrow x=3\)(nhận)

b)\(\left(x+1\right)\left(x^2+1\right)=0\)

Hoặc \(x+1=0\Leftrightarrow x=-1\)(nhận)

Hoặc\(x^2+1=0\Leftrightarrow x^2=-1\)(vô lí)

c)\(5.y^2-20=0\)

\(\Rightarrow5.y^2=20\)

\(\Rightarrow y^2=4\)

\(\Rightarrow\hept{\begin{cases}y=2\\y=-2\end{cases}}\)

d)\(|x-2|-1=0\)

\(\Rightarrow|x-2|=1\)

\(\Rightarrow\hept{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)

e)\(|y-1|-2019=0\)

\(\Rightarrow|y-1|=2019\)

\(\Rightarrow\hept{\begin{cases}y-1=2019\\y-1=-2019\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y=2020\\y=-2018\end{cases}}\)

                                                                             HOK TOT                                                                                

16 tháng 1 2019

a, (x-2).(x-3)=0

=>x-2=0 hoặc x-3=0

<=>x=2 hoặc x=3

vậy x\(\in\){2;3}

b, (x+1)(\(x^2\)+1)=0

=>x+1=0 hoặc \(x^2\)+1=0

<=>x=-1 hoặc \(x^2\)=-1(vô lí vì \(x^2\)\(\ge\)0)

Vậy x=-1

c, 5\(y^2\)-20=0

<=>5\(y^2\)=20

<=>\(y^2\)=\(\dfrac{20}{5}\)

<=>\(y^2\)=4

<=>y=\(\pm\)2

Vậy y\(\in\){\(\pm\)2}

d,\(|x-2|\)-1=0

<=>\(|x-2|\)=1

<=> x-2=\(\pm\)1

<=>x-2=1 hoặc x-2=-1

<=>x=3 hoặc x=1

Vậy x\(\in\){1;3}

e,\(|y-1|-2019\)=0

<=>\(|y-1|\)=2019

<=>y-1=\(\pm\)2019

<=>y-1=2019 hoặc y-1=-2019

<=>y=2020 hoặc y=-2018

Vậy y\(\in\){-2018;2020}

1 tháng 5 2019

A)
=)x-2=0 hoặc x-3=0
=)x=2 hoặc x=3
B)
=)x+1=0 hoặc x^2+1=0
=)x=-1(tm)
hoặc x^2=-1(ktm vì x^2 lớn hơn hoặc =0)
=) x=-1
C)
=) 5y^2=20
=)y^2=4
=)y=2 hoặc y=-2
D)
=)/x-2/=1
=) x-2=1 hoặc x-2=-1
=)x=3 hoặc x=1
E)=) /y-1/=2019
=)y-1=2019 hoặc y-1=-2019
=) y=2020 hoặc y=-2018
~CHÚC BN HỌC TỐT NHẮ~



12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

11 tháng 1 2018

bài 1:

|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1

a

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5

= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)

+) A = 2x\(^2\) - 3x + 5

= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5

= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5

= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)

b) +) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1

= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)

+) B = 2x\(^2\) - 3xy + y\(^2\)

= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)

= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1

= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)

11 tháng 1 2018

bài 3

x.y.z = 2 và x + y + z = 0

A = ( x + y )( y +z )( z + x )

= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )

= 0 + 2 = 2

bài 4

a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)

=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)

=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)

x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)

+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)

2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0

x = 0 : 2 = 2

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)               Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào...
Đọc tiếp

1) Cho biểu thức A = \(\frac{2012-x}{6-x}\). Tìm giá trị nguyên của x để A đạt giá trị lớn nhất. Tìm giá trị đó.

2) Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
               Tính giá trị của biểu thức: M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)


3) Trong ba số a,b,c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết: lal = b2 (b-c). Hỏi số nào dương, số nào âm, số nào bằng 0?

4) Tìm hai số x và y sao cho x + y = xy = x : y (y khác 0).

5) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: a2 + a - p = 0

6) Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA : MB : MC = 1:2:3. Tính số đo góc AMB ?

7) Tìm x,y biết: \(\frac{6}{\left(x-1\right)^2+2}=|y-1|+|y-2|+|y-3|+1\)

8) Cho M = \(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+...+\frac{1}{9177}\)
                So sánh M với \(\frac{1}{12}\)
9) Cho các số nguyên dương a,b,c,d,e thỏa mãn: a2 + b2 + c2 + d2 + e2 chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số.

10) Cho biểu thức: A = \(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+...+\frac{1}{3^{100}}\)
                       Tính giá trị của biểu thức B = \(4|A|+\frac{1}{3^{100}}\)

9) Cho tam giác ABC có góc A bằng \(^{90^o}\). Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BC + DE.

10) Tam giác ABC cân ở B có góc ABC = \(80^o\). I là một điểm nằm trong tam giác, biết góc IAC = \(10^o\)và góc ICA = \(30^o\). Tính góc AIB = ?

 

9
10 tháng 2 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Thay vào M ta có 

\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

P/s : hỏi từng câu thôi 

10 tháng 2 2019

Tại bận -.-

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....