K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

a) Ta có :

\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)

\(7^4=2401\text{≡}1\left(mod15\right)\)

\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)

\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)

Vậy ...

b) Để tớ hỏi cô tớ chút nhé :(

9 tháng 9 2016

-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ

17 tháng 9 2016

dễ mà bài này quá dễ

17 tháng 9 2016

Phan Văn Hiếu:làm đi trước khi nói

27 tháng 9 2016

Đối với những dạng bài tìm số dư của lũy thừa chồng lũy thừa ta sẽ tìm n để \(a^n:b\)dư 1 . Trong bài này a = 7, b = 15.
Dễ dàng nhận thấy: \(7^4:15=160\)dư 1.
Vậy ta sẽ tìm số dư của \(7^7\)khi chia cho 4.
Nhận xét: \(7^2:4=12\)dư 1.
Vậy: \(7^7=7^{2.3+1}=\left(7^2\right)^3.7\).
Do \(7^2\)chia 4 dư 1 và 7 chia cho 4 dư 3 nên. \(\left(7^2\right)^3.7\)chia cho 4 dư \(\left(1\right)^3.3=3.\)
Suy ra: \(7^7=4k+3,\)k là số nguyên dương.
Ta có: \(7^{7^7}=7^{4k+3}=\left(7^4\right)^k.7^3.\)
Nhận xét: \(\left(7^4\right)^k\)chia 15 dư 1; \(7^3=343\) chia 15 dư 13. 
Vậy: \(7^{7^7}\)chia 15 dư 1. 13 = 13.

27 tháng 9 2016

I am ateachear I can kill you,k me

22 tháng 4 2019

Ta có :

(x + 3 ) (x+5)(x+7)(x+9) + 2033

= ( x2 + 12x + 27 ) (x2 + 12x + 35 ) + 2033

đặt x2 + 12x + 30 = a

Khi đó : (a - 3 ) ( a + 5 ) + 2033

= a2 + 2a - 15 + 2033

= a2 + 2a + 2018

Vậy số dư là 2018

19 tháng 6 2019

giai lai

\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)

Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)

\(\Rightarrow3^{506^{80}}=3^{4k}\)

Ta có:

\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)

\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)

\(\Rightarrow3^{4k}-6⋮5\)(2)

Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1

Vậy...

19 tháng 6 2019

nhầm dòng gần cuối 34k-6 :(( 

11 tháng 2 2018

Gọi thương của phép chia  \(x^3+ax+b\)   cho  \(x+1\)là   \(A\left(x\right)\);   cho  \(x-2\)là     \(B\left(x\right)\)

Ta có:    \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)

             \(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)

Theo định lý  Bơ-du ta có:

          \(f\left(-1\right)=-1-a+b=7\)

        \(f\left(2\right)=8+2a+b=4\)

suy ra:   \(a=-4;\)   \(b=4\)

Vậy...