Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)
= 3x2-2xy+y2+x2-xy+2y2-4x2+y2
= 4y2-3xy
b, = x2-y2+2xy-x2-xy-2y2+4xy-1
= -3y2+5xy
c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2
a, A=\(\left(2x^2y-4xy^3\right)-\left(3x^2y-2xy^3\right)\)
= \(2x^2y-2xy^3-3x^2y+2xy^3\)
= \(2x^2y-3x^2y-2xy^3+2xy^3\)
=\(-1x^2y-0\)
=\(-1x^2y\)
Bn tự làm tiếp nhé
a, A - (5xy - 2y3 + 4x2) = -x2 - 6xy + y3
A = -x2 - 6xy + y3 + 5xy - 2y3 + 4x2
A = -y3 + 3x2 - xy
Đa thức A có bậc 3
b, (20x2y3 - 12xy2 - y3) - B = 12x2y3 + 2y3
B = 20x2y3 - 12xy2 - y3 - 12x2y3 - 2y3
B = 8x2y3 - 12xy2 - 3y3
Đa thức B có bậc 5
Chúc bn học tốt!
Bài 26:
\(A+B+C=4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2\)
\(=\left(4x^2+3x^2-x^2\right)+\left(-5xy+2xy+3xy\right)+\left(3y^2+y^2+2y^2\right)\)
\(=6x^2+6y^2\)
\(B-C-A=\left(3x^2+2xy+y^2\right)-\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)\)
\(=3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2\)
\(=\left(3x^2-4x^2+x^2\right)+\left(2xy-3xy+5xy\right)+\left(y^2-2y^2-3y^2\right)\)
\(=-4xy-2y^2\)
\(C-A-B=\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2\)
\(=\left(-x^2-4x^2-3x^2\right)+\left(3xy+5xy-2xy\right)+\left(2y^2-3y^2-y^2\right)\)
\(=-8x^2+6xy-2y^2\)
cái câu B-C-A ý thì kết quả phải là 4xy-4y^2 chứ
vì: 2xy-3xy+5xy =4 xy
y^2 - 2y^2-3y^2 = -4y^2
=> = 4xy-4y^2
a) A = 5x2y - 2xy2 + 3x3y3 + 3xy2 - 4x2y - 4x3y3
A = x2y + xy2 - x3y3
B) ( 7x + 7y ) - ( 4x - 2y )
B = 7x + 7y - 4x + 2y
B = 3x + 9y
A + B + C = ( 4x2 - 5xy + 3y2 ) + ( 3x2 + 2xy + y2 ) + ( -x2 + 3xy + 2y2 )
= 4x2 - 5xy + 3y2 + 3x2 + 2xy + y2 - x2 + 3xy + 2y2
= ( 4x2 - 3x2 - x2 ) + ( 5xy + 2xy + 3xy ) + ( 3y2 + y2 + 2y2 )
= 10xy + 6y2
B - C - A = ( 3x2 + 2xy + y2 ) - ( -x2 + 3xy + 2y2 ) - ( 4x2 - 5xy + 3y2 )
= 3x2 + 2xy + y2 + x2 - 3xy - 2y2 - 4x2 + 5xy - 3y2
= ( 3x2 + x2 - 4x2 ) - ( 2xy - 3xy + 5xy ) - ( y2 - 2y2 - 3y2 )
= 0 - 0 - ( -4y2 )
= 0 + 4y2
= 4y2
C - A - B = ( -x2 + 3xy + 2y2 ) - ( 4x2 - 5xy + 3y2 ) - ( 3x2 + 2xy + y2 )
= -x2 + 3xy + 2y2 - 4x2 + 5xy - 3y2 - 3x2 - 2xy - y2
= ( -x2 - 4x2 - 3x2 ) - ( 3xy + 5xy - 2xy ) - ( 2y2 - 3y2 - y2 )
= -8x2 - 6xy - ( -2y2 )
= -8x2 - 6xy + 2y2
* Lần đầu làm xD Sai sót gì mong bạn thông cảm *
Ta có :
\(A+B+C=4x^2-5xy+5y^2+3x^2+2xy+y^2+x^2+3xy+2y^2\)
\(=\left(4x^2+3x^2+x^2\right)+\left(-5xy+2xy+3xy\right)+\left(5y^2+y^2+2y^2\right)\)
\(=8x^2+8y^2\)
\(B-C-A=\left(3x^2+2xy+y^2\right)-\left(x^2+3xy+2y^2\right)-\left(4x^2-5xy+5y^2\right)\)
\(=3x^2+2xy+y^2-x^2-3xy-2y^2-4x^2+5xy-5y^2\)
\(=\left(3x^2-x^2-4x^2\right)+\left(2xy-3xy+5xy\right)+\left(y^2-2y^2-5y^2\right)\)
\(=-2x^2+4xy-6y^2\)
\(C-A-B=\left(x^2+3xy+2y^2\right)-\left(4x^2-5xy+5y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=x^2+3xy+2y^2-4x^2+5xy-5y^2-3x^2-2xy-y^2\)
\(=\left(x^2-4x^2-3x^2\right)+\left(3xy+5xy-2xy\right)+\left(2y^2-5y^2-y^2\right)\)
\(=-6x^2+6xy-4y^2\)
\(A+B-C=4x^2-5xy+5y^2+3x^2+2xy+y^2-\left(x^2+3xy+2y^2\right)\)
\(=4x^2-5xy+5y^2+3x^2+2xy+y^2-x^2-3xy-2y^2\)
\(=\left(4x^2+3x^2-x^2\right)+\left(-5xy+2xy-3xy\right)+\left(5y^2+y^2-2y^2\right)\)
\(=6x^2-6xy+4y^2\)
C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1
C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1
C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1
=>Bặc: 3
D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2
D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2
D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2
=> Bậc :4
E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1
E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1
E= 2x2y + \(\dfrac{13}{2}\)xy + 1
=> Bậc: 3
K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1
K= (5x3 - 6x3 ) + (- 4x + 4x) +1
K= -1x3 + 1
=>Bậc: 3
F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5
F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5
F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5
=> Bậc :6
CHÚC BN HỌC TỐT ^-^
a) \(P+\left(4x^2-5xy-y^2\right)=5x^2+10xy-2y^2\)
\(P=5x^2+10xy-2y^2-4x^2+5xy+y^2\)
\(P=x^2+15xy-y^2\)
Vậy....
b) \(\left(2xy+y^2\right)-P=3x^2-6xy+y^2\)
\(P=2xy+y^2-3x^2+6xy-y^2\)
\(P=-3x^2+8xy\)
Vậy....
a) P + ( 4x2 - 5xy - y2 ) = 5x2 + 10xy - 2y2
<=> P = 5x2 + 10xy - 2y2 - ( 4x2 - 5xy - y2 )
= 5x2 + 10xy - 2y2 - 4x2 + 5xy + y2
= x2 + 15xy - y2
b) ( 2xy + y2 ) - P = 3x2 -6xy + y2
<=> P = ( 2xy + y2) - ( 3x2 - 6xy + y2 )
= 2xy + y2 - 3x2 + 6xy -y2
= 8xy - 3x2