Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)
Bài làm:
Ta có: \(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3+3x^3y^2-5x^2\)
=> Bậc của đa thức A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
=> Bậc của đa thức B là 6
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3-5x^2+3x^3y^2\)
Xét bậc của từng hạng tử :
3x2y3 có bậc 5
-5x2 có bậc 2
3x3y2 có bậc 5
=> Bậc của A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Xét bậc từng hạng tử
5/2 . x5y có bậc 6
7/3 xy4 có bậc 5
-1/4 x2y3 có bậc 5
=> Bậc của B là 6
a: \(A=3x^2y^3-5x^2+3x^3y^2\)
\(B=x^2y^3+\dfrac{5}{2}x^5y-5x^2y\)
b: \(A+B=4x^2y^3+5x^2+\dfrac{5}{2}x^5y+3x^3y^2-5x^2y\)
\(A-B=2x^2y^3-5x^2+3x^3y^2-\dfrac{5}{2}x^5y+5x^2y\)
c: Khi x=-1 và y=-1/3 thì \(A=3\cdot\left(-1\right)^2\cdot\dfrac{-1}{27}-5\cdot\left(-1\right)^2+3\cdot\left(-1\right)^3\cdot\dfrac{1}{9}\)
\(=-\dfrac{1}{9}-5-\dfrac{1}{3}=\dfrac{-49}{9}\)
Bài 26:
\(A+B+C=4x^2-5xy+3y^2+3x^2+2xy+y^2-x^2+3xy+2y^2\)
\(=\left(4x^2+3x^2-x^2\right)+\left(-5xy+2xy+3xy\right)+\left(3y^2+y^2+2y^2\right)\)
\(=6x^2+6y^2\)
\(B-C-A=\left(3x^2+2xy+y^2\right)-\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)\)
\(=3x^2+2xy+y^2+x^2-3xy-2y^2-4x^2+5xy-3y^2\)
\(=\left(3x^2-4x^2+x^2\right)+\left(2xy-3xy+5xy\right)+\left(y^2-2y^2-3y^2\right)\)
\(=-4xy-2y^2\)
\(C-A-B=\left(-x^2+3xy+2y^2\right)-\left(4x^2-5xy+3y^2\right)-\left(3x^2+2xy+y^2\right)\)
\(=-x^2+3xy+2y^2-4x^2+5xy-3y^2-3x^2-2xy-y^2\)
\(=\left(-x^2-4x^2-3x^2\right)+\left(3xy+5xy-2xy\right)+\left(2y^2-3y^2-y^2\right)\)
\(=-8x^2+6xy-2y^2\)
cái câu B-C-A ý thì kết quả phải là 4xy-4y^2 chứ
vì: 2xy-3xy+5xy =4 xy
y^2 - 2y^2-3y^2 = -4y^2
=> = 4xy-4y^2
Mình sửa lại đề tí, ax5x2 chắc gõ nhầm :)
ax5y2 - 3x3y + 7x3y + ax5y2
= 2ax5y2 + 4x3y
Ta có: 2ax5y2 có bậc là 7, 4x3y có bậc là 4
Mà bậc của đa thức trên là 4
\(\Rightarrow\) 2ax5y2 = 0 \(\Rightarrow\) a = 0
Vậy a = 0 thì đa thức ax5y2 - 3x3y + 7x3y + ax5y2 có bậc là 4
Chúc bn học tốt!
a, Ta có : \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=-2x^4y^3+7xy^2\)
Bậc : 7
b, Thay x = 1 ; y = 1
\(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2\)
\(=2+7=9\)
a) \(P+\left(4x^2-5xy-y^2\right)=5x^2+10xy-2y^2\)
\(P=5x^2+10xy-2y^2-4x^2+5xy+y^2\)
\(P=x^2+15xy-y^2\)
Vậy....
b) \(\left(2xy+y^2\right)-P=3x^2-6xy+y^2\)
\(P=2xy+y^2-3x^2+6xy-y^2\)
\(P=-3x^2+8xy\)
Vậy....
a) P + ( 4x2 - 5xy - y2 ) = 5x2 + 10xy - 2y2
<=> P = 5x2 + 10xy - 2y2 - ( 4x2 - 5xy - y2 )
= 5x2 + 10xy - 2y2 - 4x2 + 5xy + y2
= x2 + 15xy - y2
b) ( 2xy + y2 ) - P = 3x2 -6xy + y2
<=> P = ( 2xy + y2) - ( 3x2 - 6xy + y2 )
= 2xy + y2 - 3x2 + 6xy -y2
= 8xy - 3x2
A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2
= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)
= 3x2y2-5x2+3x3y2
Bậc của đa thức A: 5
Hệ số cao nhất: 3
B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)
=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3
Bậc của đa thức B: 6
Hệ số cao nhất : \(\dfrac{7}{3}\)
a, A - (5xy - 2y3 + 4x2) = -x2 - 6xy + y3
A = -x2 - 6xy + y3 + 5xy - 2y3 + 4x2
A = -y3 + 3x2 - xy
Đa thức A có bậc 3
b, (20x2y3 - 12xy2 - y3) - B = 12x2y3 + 2y3
B = 20x2y3 - 12xy2 - y3 - 12x2y3 - 2y3
B = 8x2y3 - 12xy2 - 3y3
Đa thức B có bậc 5
Chúc bn học tốt!