Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: \(=3\left(x-2y\right)+y\left(x-2y\right)=\left(x-2y\right)\left(y+3\right)\)
3: \(=x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
4: \(x^2+2x+1-16y^2\)
\(=\left(x+1\right)^2-16y^2\)
\(=\left(x+1+4y\right)\left(x+1-4y\right)\)
5: \(x^2-y^2+5x+5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+5\right)\)
6: \(=25-\left(x^2-2xy+y^2\right)\)
\(=25-\left(x-y\right)^2\)
\(=\left(5-x+y\right)\left(5+x-y\right)\)
a) \(2x^3+6x=2x\left(x^2+3\right)\)
\(\Leftrightarrow2x^3+6x=2x^3+6x\)
\(\Leftrightarrow0x=0\)
b) \(5x\left(x-2\right)-3x^2\left(x-2\right)=x\left(x-2\right)\left(5-3x\right)\)
c) \(3x\left(x-5y\right)-2y\left(5y-x\right)=\left(x-5y\right)\left(3x+2y\right)\)
e) \(2ax^3+4bx^2y+2x^2\left(ax-by\right)=2x^2\left(ax+2by\right)+2x^2\left(ax-2by\right)\)
\(=2x^2\left(ax+2by+ax-2by\right)=4ax^3\)
f) \(3x^2\left(y^2-2x\right)-15x\left(2x-y\right)^2=-3x\left(2x-y^2\right)\left(x+5\right)\)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
a, A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(2x2-2x+2)+1
=(x-y)2+2(x-1)2+1
vì (x-y)2 ≥0 ∀x,y
(x-1)2 ≥ 0 ∀x
=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y
=> A ≥1
= > GTNN A = 1 khi
x-1=0
=> x=1
x-y=0
=> 1-y=0
=> y=1
vậy GTNN A =1 khi x=y=1
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
a/ \(=3y^2-6y-2x+1\)
b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
c/ \(=\left(2-x\right)^3\)
d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)
\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)
\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)
e/ \(=xy-x^2+2x-y^2+xy-2y\)
\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)
a) =(2x+3y-1)2
b)=-(x-1)3
c)=-(x3-6x2+12x-8)=-(x-2)3
d)x3 + 2x2y + xy2 – 9x
= x(x2 + 2xy + y2 -9)
= x[(x2 + 2xy + y2) - 32]
= x[(x + y)2 - 32]
= x (x + y – 3)(x + y + 3)
e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)
=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)
=>\(2A=4x^2+4y^2-2x^2y^2\)
=>\(A=2x^2+2y^2-x^2y^2\)
b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)
=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)
=>\(2A=4x^2+2xy-8y-2y^2\)
=>\(A=2x^2+xy-4y-y^2\)
c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)
=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)
=>\(A=-x^2y+4xy^3+2xy^2\)