K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

\(x+\sqrt{2-x^2}=4y^2+4y+3=\left(2y+1\right)^2+2\ge2>0\)

Do \(\sqrt{2-x^2}\ge0\Rightarrow x>0\) 

AD BĐT Bunhiacopxki cho 2 số x và \(\sqrt{2-x^2}\) , ta có : 

\(VT=x+\sqrt{2-x^2}\le\sqrt{\left(1+1\right)\left(x^2+2-x^2\right)}=2\)

Mà \(VP\ge2\) \(\Rightarrow VT=VP=2\)

Dấu " = " xảy ra \(\Leftrightarrow2y+1=0;x=\sqrt{2-x^2}\Leftrightarrow y=-\frac{1}{2};x=1\)

9 tháng 5 2017

a/ Sửa đề:

\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)

\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)

\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)

\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)

9 tháng 5 2017

Câu b đề sai rồi.

6 tháng 12 2015

VT áp dụng BĐT bu-nhi-a- cop - xki 

Vp đưa về Hđt 

4 tháng 9 2016

Kho qua!

4 tháng 9 2016

toan lop 9 kho dui

ban dua cau hoi nay len 24h di

18 tháng 10 2021

\(2\left(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3\right)=0\)

Ta có:

\(VT=\left(y-1\right)^2-4\sqrt{x-1}\left(y-1\right)+4\left(x-1\right)+y^2-6y+9\)

\(=\left[\left(y-1\right)-2\sqrt{x-1}\right]^2+\left(y-3\right)^2\ge0=VP\)

Dấu = xảy ra khi:

\(\hept{\begin{cases}y-3=0\\y-1=2\sqrt{x-1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\\x=2\end{cases}}\)