K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

Ta có :

\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)

\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)

không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)

Khi đó : A = x - y + y - z + x - z = 2x - 2z

vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)

\(\Rightarrow A\le6\)

Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các  hoán vị

11 tháng 10 2017

cho mình sửa nha \(2\sqrt{2x-1}\)

14 tháng 4 2020

\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\left(1\right)\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\left(2\right)\end{cases}}\)

\(ĐK:x\ge\frac{1}{2};y\ge0\)

5 tháng 7 2020

\(\left(1\right)\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{y}\right)^2=9\Leftrightarrow\sqrt{2x-1}+\sqrt{y}=3\)

\(\Leftrightarrow\sqrt{2x-1}=3-\sqrt{y}\)(*)

Thay \(\sqrt{2x-1}=3-\sqrt{y}\)vào (2), ta được: \(\sqrt{3y+4}-\sqrt{2y+1}-2\left(\sqrt{y}-2\right)-1=0\)

\(\Leftrightarrow\left(\sqrt{3y+4}-4\right)-\left(\sqrt{2y+1}-3\right)-2\left(\sqrt{y}-2\right)=0\)

\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y+4}+4}-\frac{2\left(y-4\right)}{\sqrt{2y+1}+3}-\frac{2\left(y-4\right)}{\sqrt{y}+2}=0\)

\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y+4}+4}-\frac{2}{\sqrt{2y+1}+3}-\frac{2}{\sqrt{y}+2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=4\Rightarrow x=1\\\frac{3}{\sqrt{3y+4}+4}=\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}\left(3\right)\end{cases}}\)

Với \(y\ge0\)thì \(\frac{3}{\sqrt{3y+4}+4}\le\frac{1}{2}\)

Từ (*) suy ra \(y\le9\Rightarrow\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}>\frac{1}{2}\)

Suy ra (3) vô nghiệm

Vậy hệ có cặp nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

7 tháng 5 2015

biết chết liền, vì em học lớp 1 mà. Xin lỗi chị nha. Có gì thì chị lên lớp hỏi bạn chị ấy

(x+2)2 + 2y(x+1) +y2 = -\(\sqrt{2x-3y-3}\)

\(\Leftrightarrow\)\(\left(x+y+1\right)^2=-\sqrt{2x-3y-3}\)

Ta có: \(\left(x+y+1\right)^2\ge o\)

Dấu "=" xảy ra khi và chỉ khi (x+y+1)2=0<=>x+y+1=0 (1)

Lại có: \(\sqrt{2x-3y-3}\ge0\)\(\Leftrightarrow-\sqrt{2x-3y-3}\le0\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{2x-3y-3}=0\)<=> 2x-3y-3=0(2)

Từ (1) và (2), ta có 1 hệ 2 phương trình hai ẩn, bạn dùng phương pháp thế để giài

Kết quả: x=0; y=-1

18 tháng 6 2017

từ pt thứ nhất ta có x + y = 2xy.

đặt xy = t.

pt thứ 2: 2t - t2 = \(\sqrt{\left(t-1\right)^2+1}\) hay \(1-\left(t-1\right)^2=\sqrt{\left(t-1\right)^2+1}\)

đặt a = (t - 1)2.

pt: 1 - a = \(\sqrt{a+1}\) hay a2 -2a + 1 = a + 1 (đk: a \(\le\) 1).

hay a2 - 3a = 0 hay a = 3 (loại) hoặc a = 0.

với a = 0 thì t = 1 hay xy = 1 và x + y = 2.

x, y là nghiệm pt: z2 - 2z + 1 = 0 hay z = 1 hay x= y = 1.
 

3 tháng 5 2020

\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)(*)

Ta có (*) <=> \(\left[\left(x^2+1\right)y-4x\right]^2+\sqrt{x^2-2x-y^2+9}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)y-4x=0\\x^2-2x-y^3+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}yx^2-4x+y=0\left(1\right)\\x^2-2x-y^3+9=0\left(2\right)\end{cases}}}\)

Nếu y=0 thì từ (1) => x=0, thay vào (2) không thỏa mãn

Nếu y\(\ne\)0 ta coi (1) và (2) là phương trình bậc hai ẩn x

Điều kiện để có nguyên x là: \(\hept{\begin{cases}\Delta_1=4-y^2\ge0\\\Delta_2=y^3-8\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}-2\le y\le2\\y\ge2\end{cases}\Leftrightarrow}y=2}\)

Thay y=2 vào hệ (1), (2) ta được \(\hept{\begin{cases}2x^2-4x+2=0\\x^2-2x+1=0\end{cases}\Leftrightarrow x=1}\)

Vậy x=1; y=2