Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Đặt \(n^2+2n+12=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+11=a^2\)
\(\Rightarrow\left(n+1\right)^2-a^2=-11\)
\(\Rightarrow\left(n+1-a\right)\left(n+1+a\right)=-11\)
Đến đây bạn xét ước của 11 nên tìm ra n dễ dàng.
P/S:Câu b tương tự.
a, Đặt \(n^2+2n+12=k^2\left(k\in N\right)\)
\(\Rightarrow\left(n^2+2n+1\right)+11=k^2\Rightarrow k^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\)
Ta thấy: \(k+n+1>k-n-1\) và \(k+n+1;k-n-1\in N\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=11\cdot1\)
Với \(k+n+1=11\Rightarrow k=6\)
Thay vào ta có: \(k-n-1=1\Rightarrow6-n-1=1\Rightarrow n=4\)
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
ta co n^2+3n=a^2
suy ra 4n^2+12n=4a^2
suy ra (2n)^2+2.2n.3+9=4a^2+9
suy ra (2n+3)^2-(2a)2=9
suy ra (2n+3-2a)(2n+3+2a)=9
suy ra tung cai thuoc uoc cua 9
tu lam not nhe
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2