Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu b đk x>= -1/4
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)
\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2
Ta có: \(16a^4+4=16a^4+2.4a^2.2+4-16a^2\)
\(=\left(4a+2\right)^2-16a^2\)
\(=\left(4a+2\right)^2-16a^2\)
\(=\left(4a^2-4a+2\right).\left(4a^2+4a+2\right)\)
\(=\left[\left(2a-1\right)^2+1\right].\left[\left(2a+1\right)^2+1\right]\) ( a \(\in\) N* )
Do đó: \(16a^4+4=\left[\left(2a-1\right)^2+1\right].\left[\left(2a+1\right)^2+1\right]\) ( * )
Thay a lần lượt bằng 1, 2, 3, ..., 2014, ta có:
\(16.1^4+4=\left[\left(2.1-1\right)^2+1\right].\left[\left(2.1+1\right)^2+1\right]=\left(1^2+1\right).\left(3^2+1\right)\)
\(16.2^4+4=\left[\left(2.2-1\right)^2+1\right].\left[\left(2.2+1\right)^2+1\right]=\left(3^2+1\right).\left(5^2+1\right)\)
\(16.3^4+4=\left[\left(2.3-1\right)^2+1\right].\left[\left(2.3+1\right)^2+1\right]=\left(5^2+1\right).\left(7^2+1\right)\)
\(16.4^4+4=\left[\left(2.4-1\right)^2+1\right].\left[\left(2.4+1\right)^2+1\right]=\left(7^2+1\right).\left(9^2+1\right)\)
\(......\)
\(16.2005^4+4=\left[\left(2.2005-1\right)^2+1\right].\left[\left(2.2005+1\right)^2+1\right]=\left(4009^2+1\right).\left(4011^2+1\right)\)
\(16.2006^4+4=\left[\left(2.2006-1\right)^2+1\right].\left[\left(2.2006+1\right)^2+1\right]=\left(4011^2+1\right).\left(4013^2+1\right)\)
Đặt \(T=\dfrac{\left(1^4+\dfrac{1}{4}\right).\left(3^4+\dfrac{1}{4}\right)...\left(2005^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right).\left(4^4+\dfrac{1}{4}\right)...\left(2006^4+\dfrac{1}{4}\right)}\)
\(\Leftrightarrow T=\dfrac{16.\left(1^4+\dfrac{1}{4}\right).16\left(3^4+\dfrac{1}{4}\right)...16\left(2005^4+\dfrac{1}{4}\right)}{16.\left(2^4+\dfrac{1}{4}\right).16\left(4^4+\dfrac{1}{4}\right)...16\left(2006^4+\dfrac{1}{4}\right)}\)
\(\Leftrightarrow T=\dfrac{\left(16.1^4+4\right).\left(16.3^4+4\right)...\left(16.2005^4+4\right)}{\left(16.2^4+4\right).\left(16.4^4+4\right)...\left(16.2006^4+4\right)}\)
\(\Leftrightarrow T=\dfrac{\left(1^2+1\right).\left(3^2+1\right).\left(5^2+1\right)...\left(4009^2+1\right).\left(4011^2+1\right)}{\left(3^2+1\right).\left(5^2+1\right).\left(7^2+1\right)...\left(4011^2+1\right).\left(4013^2+1\right)}\)
\(\Leftrightarrow T=\dfrac{1^2+1}{4013^2+1}\)
\(\Leftrightarrow T=\dfrac{2}{4013^2+1}\)
ta có \(\frac{a}{\sqrt{a+bc}}=\frac{a}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự rồi cộng lại = P<=3/2
dâu = xảy ra <=> a=b=c=1/3
^^
Xét \(\frac{a}{\sqrt{a+bc}}=\sqrt{\frac{a^2}{a+bc}}\)
Ta có: a + bc = 1-b-c+bc ( Do a=1-b-c ) => a+bc = 1-b-c+bc = (b-1)(c-1)
=> \(\sqrt{\frac{a^2}{a+bc}}=\sqrt{\frac{a^2}{1-b-c+bc}}=\sqrt{\frac{a^2}{\left(b-1\right)\left(c-1\right)}}=\sqrt{\frac{a}{b-1}.\frac{a}{c-1}}\le\frac{1}{2}\left(\frac{a}{b-1}+\frac{b}{c-1}\right)\)