Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)= \(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a=1,b=2,c=3,d=4.
Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.
Bạn tham khảo bài của Đinh Tuấn Việt ở Câu hỏi của Tài Nguyễn Tuấn - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
\(m;n\in N\Rightarrow m;n\ge0\)
\(p\) là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\Leftrightarrow p^2=\left(m-1\right)\left(m+n\right)\)
Do \(\left(m-1\right)\) và \(\left(m+n\right)\) là các ước nguyên dương của \(p^2\)
Lưu ý: \(m-1< m+n\left(1\right)\)
Vì \(p\) là số nguyên tố nên \(p^2\)chỉ có các ước nguyên dương là \(1,p\) và \(p^2(2)\)
Từ \((1)\) và \(\left(2\right)\) ta có \(m-1=1\) và \(m+n=p^2\)
\(\Rightarrow m=2\) và\(2+n=p^2\)
Vậy\(A=p^2-n=2\)
\(\frac{n+3}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)
Để n+3/n-2 là số nguyên thì: n-2 thuộc Ư(5)={1;-1;5;-5}
=>n=3;1;7;-3
Với n=3 => n+3/n-2 nguyên dương
n=1 => n+3/n-2 nguyên âm
n=7 =>n+3/n-2 nguyên dương
n=-3 =>n+3/n-2 nguyên âm
Vậy n=3;7
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a = 1; b = 2; c = 3; d = 4.
\(\frac{16^2-b^2+7}{a^3+78-43.2}=107\)
\(\Rightarrow16^2-b^2+7=107a^3+78.107-43.2.107\)
\(\Rightarrow256-b^2+7=107a^3+8346-9202\)
\(\Rightarrow263-b^2=107a^3-856\)
\(\Rightarrow263-b^2+856=107a^3\)
\(\Rightarrow1119=107a^3+b^2\)
Ta có:
\(107a^3<1119\)
\(\Rightarrow a^3\le10\)
Mà a là số tự nhiên nên \(a^3\in\left\{0;1;8\right\}\)
\(\Rightarrow a\in\left\{0;1;2\right\}\)
Với a=0
\(b^2=1119\)
Mà 1119 không phải số chính phương
-> Loại
Với a=1
\(b^2=1119-107.1^3=1012\)
Mà 1012 không là số chính phương
-> Loại
Với a=2
\(b^2=1119-107.8=263\)
263 không phải số chính phương
-> Loại
Vậy không có a, b thỏa mãn.
\(\frac{a+7b}{a+5b}=\frac{29}{28}\Rightarrow\left(a+7b\right).28=\left(a+5b\right).29\)
\(\Leftrightarrow28a+196b=29a+145b\)
\(\Leftrightarrow29a-28a=196b-145b\)
\(\Leftrightarrow a=51b\)
Do đó a luôn chia hết cho 51 nên a không thể là số nguyên tố.
Vậy không tìm được số a;b thỏa mãn đề bài.