Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a = 1; b = 2; c = 3; d = 4.
Điều kiện: \(a;b;c;d\in|N ^* \)
Ta có: \(\frac{a}{b}=\frac{5}{3} => b=\frac{3}{5} a\) (1)
\(\frac{b}{c}=\frac{12}{21}=>c=\frac{21}{12}b=\frac{7}{4}b=\frac{7}{4}.\frac{3}{5}a=\frac{21}{20}a\) (2)
\(\frac{c}{d}=\frac{6}{11}=>d=\frac{11}{6}c=\frac{11}{6}.\frac{21}{20}a=\frac{77}{40}a\) (3)
Theo yêu cầu đề, ta chọn a = 40
Từ (1), (2), (3) suy ra \(\begin{align} \begin{cases} b&=24\\ c&=42\\ d&=77 \end{cases} \end{align} \)
Vậy 4 số tự nhiên nhỏ nhất cần tìm là: 40; 24; 42; 77
a) Theo đề bài, ta có :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)
5x-1 | -1 | 4 | -6 |
5x | 0 | 5 | -5 |
x | 0 | 1 | -1 |
y | -60 | 15 | -10 |
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
<=> \(\frac{xy-27}{9y}\frac{1}{18}\)
<=> \(\frac{2\left(xy-27\right)}{18y}=\frac{y}{18y}\)
=> 2(xy-27) = y
<=> 2xy -27 = y
đến ĐÂY tự giải nha
\(\frac{30}{43}\)=\(\frac{1}{\frac{43}{30}}\)= \(\frac{1}{1+\frac{13}{30}}\)=\(\frac{1}{1+\frac{1}{2+\frac{4}{13}}}\)=\(\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a=1,b=2,c=3,d=4.
Suy nghĩ đi, chỗ nào ko hiểu hỏi mình, lát mình quay lại giờ mình bận.