Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)
\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)
\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\) \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)
\(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\) \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)
\(\Leftrightarrow2x=\frac{11}{6}\) \(\Leftrightarrow2x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{11}{12}\) \(\Leftrightarrow x=\frac{1}{3}\)
P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~
1) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=1\)
\(\Leftrightarrow x+y+z=xyz\)
Không mất tính tổng quát, giả sử: \(x\le y\le z\)
Lúc đó: \(x+y+z\le3z\)
\(\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)
\(\Rightarrow xy\in\left\{1;2;3\right\}\)
* Nếu xy = 1 thì x = y = 1\(\left(x,y\inℤ\right)\). \(\Rightarrow2+z=z\)(vô lí)
* Nếu xy = 2 thì x = 1, y = 2 (Do \(x\le y\),\(x,y\inℤ\))\(\Rightarrow3+z=2z\Leftrightarrow z=3\)
* Nếu xy = 3 thì x = 1, y = 3(Do \(x\le y\),\(x,y\inℤ\)) \(\Rightarrow4+z=3z\Leftrightarrow z=2\)
Vậy x,y,z là các hoán vị của (1,2,3)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow40=x\left(1-2y\right)\)
Đến đây bạn lập bảng ha !
1,b, 2xy - x = y + 5
<=> 4xy - 2x = 2y + 10
<=> 2x(2y - 1) - (2y - 1) = 11
<=> (2x - 1)(2y - 1) = 11
Lập bảng ra làm nốt
\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)
\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)
\(\Leftrightarrow y-2-3xy+6x+x=0\)
\(\Leftrightarrow-3xy+7x+y-2=0\)
\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)
\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)
\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)
Lập bảng làm nốt
\(\frac{x-1}{5}=\frac{3}{y+4}\)
=> 5.3 = (x-1)(y+4)
=> 15 = (x-1)(y+4)
=> x-1 và y+4 thuộc Ư(15)
Từ đây xét các trường hợp của x-1 và y+4 là ra. Bạn thông cảm mik lười làm phần này
Để p nguyên
=> x-2 chia hết cho x+1
=> x+1-3 chia hết cho x+1
Vì x+1 chia hết cho x+1
=> -3 chia hết cho x+1
=> x+1 thuộc Ư(-3)
KL: x thuộc {0; -2; 2; -4}