Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Giả sử \(b>c\)
Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)
Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)
Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:
Trường hợp 1: \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được
\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)
\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)
\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).
\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)
Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)
Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)
Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !
~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`
a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left(x^4-2x^3+5x^2-4x+4\right)+\left(x^2-4x+4\right)\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)
\(x^4-9x^3+28x^2-36x+16\)
\(=x^4-x^3-8x^3+8x^2+20x^2-20x-16x+16\)
\(=\left(x^4-x^3\right)-\left(8x^3-8x^2\right)+\left(20x^2-20x\right)-\left(16x-16\right)\)
\(=x^3\left(x-1\right)-8x^2\left(x-1\right)+20x\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-2x^2-6x^2+12x+8x-16\right)\)
\(=\left(x-1\right)[x^2\left(x-2\right)-6x\left(x-2\right)+8\left(x-2\right)]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-4x-2x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)[x\left(x-4\right)-2\left(x-4\right)]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
a) \(A=\left(x-2\right)x-3\left(x-4\right)\left(x-5\right)+1=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)
\(A=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1=\left(y+1\right)\left(y-1\right)+1\)
\(A=y^2-1+1=y^2=\left(x^2-7x+11\right)^2\)
b) đề --> bản chất không sai--> không hợp lý--> sửa
c)
Không thuộc 7-HĐT:-> bạn chịu khó nội suy từ HĐT thứ 6: [A+B]^3--> với A=x ; ___B=(x+y)--> đáp số:\(x^3+y^3+z^3-3xzy=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)
hoặc:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right]\)
Bài 1:
Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)
\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)
Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc \(-2< x< 2\)
Giải (2) được :
\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại) hoặc \(1< x^2< 10\)(nhận)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)
\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)
Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\); \(\sqrt{7}< x< \sqrt{10}\); \(-\sqrt{10}< x< -\sqrt{7}\)
Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)
Bài 1:
Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Để tích trên < 0
: \(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm
\(\Rightarrow x^2-10< 0\)và\(x^2-7>0\)
\(\Rightarrow x^2< 10\)và \(x^2>7\)
\(\Rightarrow7< x^2< 10\)
\(\Rightarrow x^2=9\Rightarrow x=+;-3\)