Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho có nghiệm khi và chỉ khi \(\hept{\begin{cases}m\ne0\\\Delta\ge0\end{cases}}\)
Xét \(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\)
Suy ra phương trình đã cho có 2 nghiệm \(x_1;x_2\)với mọi m khác 0
Theo hệ thức Viet , ta có : \(x_1+x_2=\frac{m+2}{m}\left(1\right);x_1x_2=\frac{2}{m}\)(2)
Ta có \(P=\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{\left(x_1^2+x_2^2\right)+x_1+x_2}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2+\left(x_1+x_2\right)}{x_1x_2}-2\)(3)
Từ (1) , (2) và (3) suy ra \(P=\frac{m^2+m+2}{m}\)với m khác 0
1) \(a=1,b^,=\frac{-2\left(m-1\right)}{2},c=m^2-3m.\)
\(\Delta^'=b^2-ac\Leftrightarrow\Delta^'=\left(-\left(m-1\right)\right)^2-\left(m^2-3m\right)\)
\(=m^2-2m+1-m^2+3m=m+1\)
vậy để pt có nghiệm thì \(\Delta^'\ge0\Leftrightarrow m\ge-1\)
2)
a) \(A^2=\left(|x1+x2|\right)^2=x_1^2+x_2^2+2|x_1x_2|\)
\(A^2=\left(x_1+x_2\right)^2+2|x1x2|-2x_1x_2\)
ap dụng vi ét ta có
\(A^2=4\left(m-1\right)^2+2|m^2-3m|-2\left(m^2-3m\right)\)
\(A^2=4m^2-8m+1-2m^2+6m+2|m^2-3m|\)
\(A^2=2m^2-2m+1+2|m^2-3m|\)
\(A=\sqrt{2m^2-2m+1+2|m^2-3m|}\) \(dk;;m\ge-1\)
B) \(\text{|}x_1-x_2\text{|}=\sqrt{\left(x_1-x_2\right)^2}\) " phá căn bậc thì cũng phải phá trị tuyệt đối " " tự chức minh "
\(B=\sqrt{x_1^2+x_2^2-2x_1x_2}\)
\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\)
ap dụng vi ét ta có \(4\left(m-1\right)^2-2m^2+6m=4m^2-8m+4-2m^2+6m=2m^2-2m+4\)
\(-2x_1x_2=-2m^2+6m\)
\(B=\sqrt{2m^2-2m+4-2m^2+6m}=\sqrt{4m+4}=2\sqrt{m+1}\)
"dk m >= -1"
1) Áp dụng bất đẳng thức AM-GM :
\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)
1) Anh phương làm lạ zậy?
Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)
Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))
Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)
Vậy P min là 5/2 khi x = 2
Ta có : \(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{10\left(x+3\right)}{35}-\frac{7\left(4x-3\right)}{35}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{10\left(x+3\right)-7\left(4x-3\right)}{35}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
=> \(\left(3x-2\right)\left(\frac{51-18x}{35}\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\\frac{51-18x}{35}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x-2=0\\51-18x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\18x=51\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{51}{18}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{2}{3},\frac{51}{18}\right\}\)
- Vậy tích 2 nghiệm x1, x2 của phương trình là : \(\frac{2}{3}.\frac{51}{18}=\frac{17}{9}\)
1) Phương trình ban đầu tương đương :
\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)
Đặt \(a=2x-2,b=2019x-2018\)
\(\Rightarrow a+b=2021x-2020\)
Khi đó phương trình có dạng :
\(\left(a+b\right)^3=a^3+b^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)
\(\Leftrightarrow\)Hoặc \(2x-2=0\)
Hoặc \(2019x-2018=0\)
Hoặc \(2021x-2020=0\)
\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)
Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)
\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)
\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)
\(\Leftrightarrow-3x-xm=x-m\)
\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)
\(\Leftrightarrow x=\frac{m}{m+4}\)
Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)
\(\Rightarrow\frac{m}{m+4}\ge0\)
Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)
Lời giải:
Trước tiên, pt có hai nghiệm pb khi mà:
\(\Delta'=(m-1)^2-(2m-3)>0\)
\(\Leftrightarrow m^2-4m+4>0\Leftrightarrow (m-2)^2>0\Leftrightarrow m\neq 2\)
Áp dụng định lý Viete cho pt bậc 2:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-3\end{matrix}\right.\)
Khi đó:
\((x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2\)
\(=4(m-1)^2-4(2m-3)\)
\(=4m^2-16m+16=(2m-4)^2\)
\(\Rightarrow |x_1-x_2|=|2m-4|\)
Để \(|x_1-x_2|=5\Rightarrow |2m-4|=5\)
\(\Rightarrow \left[\begin{matrix} m=\frac{9}{2}\\ m=\frac{-1}{2}\end{matrix}\right.\) (đều thỏa mãn)
Vậy...........
xét pt \(x^2-2\left(m-1\right)x+2m-3=0\) (1)
từ (1) có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(2m-3\right)\)
\(\Delta'=m^2-2m+1-2m+3\)
\(\Delta'=m^2-4m+4\)
\(\Delta'=\left(m-2\right)^2>0\forall m\ne2\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm phân biệt \(\forall m\ne2\)
có vi - ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-3\end{matrix}\right.\)
theo bài ra ta có \(\left|x_1-x_2\right|=5\)
\(\Leftrightarrow\left(\left|x_1-x_2\right|\right)^2=25\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-25=0\)
\(\Leftrightarrow\left[2\left(m-1\right)\right]^2-4\left(2m-3\right)-25=0\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-8m+12-25=0\)
\(\Leftrightarrow4m^2-8m+4-8m-13=0\)
\(\Leftrightarrow4m^2-16m-9=0\) \(\left(2\right)\)
từ (2) có \(\Delta'=\left(-8\right)^2-4.\left(-9\right)=64+36=100>0\Rightarrow\sqrt{\Delta'}=10\)
vì \(\Delta'>0\) nên pt (2) có 2 nghiệm phân biệt
\(m_1=\dfrac{8+10}{4}=\dfrac{9}{2};m_2=\dfrac{8-10}{4}=\dfrac{-1}{2}\) ( TM \(\forall m\ne2\))
vậy \(m_1=\dfrac{9}{2};m_2=\dfrac{-1}{2}\) là các giá trị cần tìm