\(\left(m^2+2m+3\right)\cdot\left(x-6\right)=0.\)

(m là tham số) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Thay x = 4 vào phương trình, ta được :

\(1-m=2\left(2m+1\right)\left(m-1\right)\)

\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)

18 tháng 4 2022

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)

18 tháng 4 2022

-Sửa lại:

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne\dfrac{5m^2-10m+5}{m^2-2m+1}\Leftrightarrow2m^2-10m-1\ne5m^2-10m+5\Leftrightarrow3m^2+6\ne0\)(luôn đúng)

-Vậy với \(m\in R\) thì pt có nghiệm duy nhất.

1 tháng 3 2020

1) Phương trình ban đầu tương đương :

\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)

Đặt \(a=2x-2,b=2019x-2018\)

\(\Rightarrow a+b=2021x-2020\)

Khi đó phương trình có dạng :

\(\left(a+b\right)^3=a^3+b^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)

\(\Leftrightarrow\)Hoặc \(2x-2=0\) 

          Hoặc \(2019x-2018=0\)

          Hoặc \(2021x-2020=0\)

\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)

Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)

1 tháng 3 2020

\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)

\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)

\(\Leftrightarrow-3x-xm=x-m\)

\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)

\(\Leftrightarrow x=\frac{m}{m+4}\)

Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)

\(\Rightarrow\frac{m}{m+4}\ge0\)

Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)

5 tháng 6 2021

cái o kia bị lỗi mọi người bỏ đi

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow-2x+2mx-2=0\)

\(\Leftrightarrow2\left(mx-x-1\right)=0\)

\(\Leftrightarrow mx-x-1=0\)

\(\Leftrightarrow x\left(m-1\right)=1\)

\(\Leftrightarrow x=\frac{1}{m-1}\)

\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)

Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm

+ với x =1

=> PT => \(m^2-m+7+3m^2-3m-6-1=0.\)

\(\Leftrightarrow4m^2-4m=0\Leftrightarrow4m\left(m-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}.\)

+Với m =0

pt => \(x^3-7x+6=0\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)-\left(6x-6\right)=0.\)

\(\left(x-1\right)\left(x^2+x-6\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

x-1=0 => x =1

x-2 =0 => x =2

x+3 =0 => x =- 3

tương tự với m = 1 nhé