Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)
Lời giải:
Ta đi tìm giao điểm của $(d_1)$ và $(d_2)$
PT hoành độ giao điểm: \(-2x+3=3x-2\Rightarrow x=1\)
\(\Rightarrow y=-2x+3=1\)
Vậy giao điểm của $(d_1)$ và $(d_2)$ là \((1;1)\)
Để 3 đường thẳng đã cho đồng quy thì:
\((1;1)\in (d_3)\) \(\Leftrightarrow 1=k.1+k-5\Rightarrow k=3\)
Lời giải:
a)
PT hoành độ giao điểm của $(d_1)$ và $(d_2)$:
$2x+1=3\Rightarrow x=1$
Vậy tọa độ giao điểm là $(1,3)$
b)
Để 3 đường thẳng đã cho đồng quy thì $(d_3)$ đi qua giao điểm của $(d_1)$ và $(d_2)$, tức là $(d_3)$ đi qua điểm $(1,3)$
$\Rightarrow 3=k.1+5\Rightarrow k=-2$
3 đường thẳng (d1) (d2) (d3) đồng quy
=> \(d_1\cap d_2\)
Hoành độ giao điểm của 2 đường thẳng \(\left(d_1\right),\left(d_2\right)\) là nghiệm pt:
x+1=-x+3
\(\Leftrightarrow\)2x=2\(\Leftrightarrow x=1\) thay vào y=x+1
=>y=2
Vậy tọa độ giao điểm của 2 đường thẳng là A(1;2)
Vì 3 đường thẳng đồng quy
=>thay (x;y)=(1;2) vào \(\left(d_3\right)\) ta có:
2=m+m-1
\(\Leftrightarrow2=2m-1\Leftrightarrow m=\dfrac{3}{2}\)
Vậy để 3 đường thẳng đồng quy thì \(m=\dfrac{3}{2}\)
a/ \(y=\left(m-1\right)x+2m-1\)
\(\Leftrightarrow\left(m-1\right)x+2\left(m-1\right)+1-y=0\)
\(\Leftrightarrow\left(m-1\right)\left(x+2\right)+1-y=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\1-y=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(-2;1\right)\)
b/ d qua A \(\Rightarrow7=3m+1\Rightarrow m=2\)
Phương trình hoành độ giao điểm: \(2x^2-mx-1=0\)
\(\Delta=m^2+8>0\Rightarrow d\) luôn cắt (P) tại 2 điểm pb
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{m}{2}\\x_1x_2=-\frac{1}{2}\end{matrix}\right.\)
\(T=x_1x_2+\left(2x_1\right)^2.\left(2x_2\right)^2=16\left(x_1x_2\right)^2+x_1x_2\)
\(=16\left(-\frac{1}{2}\right)^2-\frac{1}{2}=\frac{7}{2}\)
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
Ta có (d1) : \(3x+2y=5\)
=> \(\left(d_1\right):y=\frac{5-3x}{2}\)
Ta có (d2) : \(2x-y=4\) ( I )
=> \(\left(d_2\right):y=2x-4\)
- Xét phương trình hoành độ giao điểm :\(\frac{5-3x}{2}=2x-4\)
=> \(5-3x=4x-8\)
=> \(x=\frac{13}{7}\)
- Thay \(x=\frac{13}{7}\) vào phương trình ( I ) ta được : \(\frac{26}{7}-y=4\)
=> \(y=-\frac{2}{7}\)
- Thay \(x=\frac{13}{7}\), \(y=-\frac{2}{7}\) vào phương trình ( d3 ) ta được :
\(\frac{13m}{7}+7.\left(-\frac{2}{7}\right)=11\)
=> \(\frac{13m}{7}=13\)
=> \(m=7\)
Vậy để 3 đường thẳng trên đồng quy tại 1 điểm thì m = 7 .
@Phạm Lan Hương
@Nguyễn Ngọc Lộc