Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\)
\(\Leftrightarrow x=3;y=2x;2z=-y+x\)
Ta có : y = 2x => y = 2 . 3 = 6
và 2z = -y + x => 2z = -6 + 3 = -3 => z = \(-\frac{3}{2}\)
b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)
\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)
\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)
Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)
và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a) |-x + 2| = -|y + 9|
=> |-x + 2| + |y + 9| = 0
Ta có: |-x + 2| \(\ge\)0 \(\forall\)x
|y + 9| \(\ge\)0 \(\forall\)y
=> |-x + 2| + |y + 9| \(\ge\)0 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)
Vậy ...
b) |3x + 4| + |2y - 10| \(\le\)0
Ta có: |3x + 4| \(\ge\)0 \(\forall\)x
|2y - 10| \(\ge\)0 \(\forall\)y
=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)
vậy ...
c) |-x - 3| + |y + 7| < 0
Ta có: |-x - 3| \(\ge\)0 \(\forall\)x
|y + 7| \(\ge\)0 \(\forall\)y
=> |-x - 3| + |y + 7| \(\ge\)0 \(\forall\)x; y
=> ko có giá trị x, y thõa mãn đb
a, \(\left|3x-4\right|+\left|3y+5\right|=0\)
Ta có :
\(\left|3x-4\right|\ge0\forall x;\left|3y+5\right|\ge0\forall x\\ \)
\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\forall x\\ \Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\\ Vậy.........\)
b, \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
Ta có :
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x;\left|y+\dfrac{1890}{1975}\right|\ge0\forall y;\left|z-2004\right|\ge0\forall z \)
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{1890}{1975}\\z=2004\end{matrix}\right.\\ Vậy............\)
c, \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\)
Ta có : \(\left|x+\dfrac{9}{2}\right|\ge0\forall x;\left|y+\dfrac{4}{3}\right|\ge0\forall y;\left|z+\dfrac{7}{2}\right|\ge0\forall z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\\ Vậy............\)
d, \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
Ta có :
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x;\left|y-\dfrac{1}{5}\right|\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)
\(\Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x;y;z\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\z=0-\dfrac{1}{5}+\dfrac{3}{4}=\dfrac{11}{20}\end{matrix}\right.\\ Vậy.......\)
e, Câu cuối bn làm tương tự như câu a, b, c nhé!
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
(\(x-3\))2 + (2y - 1)2 = 0
(\(x\) - 3)2 ≥ 0 ∀ \(x\)
(2y - 1)2 ≥ 0 ∀ y
⇔ (\(x\) - 3)2 + (2y - 1)2= 0
⇔ \(\left\{{}\begin{matrix}x-3=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{3}\end{matrix}\right.\)
(4\(x-3\))4 + (y + 2)2 ≤ 0
(4\(x\) - 3)4 ≥ 0 ∀ \(x\)
(y + 2)2 ≥ 0 ∀ y
⇔(4\(x\) - 3)4 + (y+2)2 ≥ 0
⇔ (4\(x\) - 3)4 + (y + 2)2 ≤ 0 ⇔
⇔\(\left\{{}\begin{matrix}4x-3=0\\y+2=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-2\end{matrix}\right.\)