Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy-3x-y=0
=>x(y-3)-(y-3)=3
=>(x-1)(y-3)=3
=>x-1 và y-3 thuộc Ư(3)={1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y-3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 6 | 0 | 4 | 2 |
Vậy các cặp (x;y) là (2;6);(0;0);(4;4);(-2;2)
x(y+2)+y = 1
x(y+2)+(y+2) = 1+2
(y+2)(x+1) = 3
ta co bang
y+ 2 | 1 -1 | 3 | -3 |
X + 1 | 3 -3 | 1 | -1 |
y | -1 -3 | 1 | -5 |
x | 2 -4 | 0 | -2 |
\(x\left(y+3\right)=7y+2\)
\(\Leftrightarrow x=\frac{7y+2}{y+3}\)
\(\Leftrightarrow x=\frac{7\left(y+3\right)-19}{y+3}\)
\(\Leftrightarrow x=7-\frac{19}{y+3}\)
Do x nguyên nên y+3 phải là Ư(19)
Ta có bảng:
y+3 | -19 | -1 | 1 | 19 |
y | -22 | -4 | -2 | 16 |
x | 8 | 26 | -12 | 6 |
Vậy các cặp (x;y) là (8;-22);(26;-4);(-12;-2);(6;16)
theo bài ra ta có
XY+3X-7Y=2
X x[Y+3]-7Y=2
X x[Y+3]-7Y-21=2-21
X x[Y+3]-[7Y+7x3]=-19
X x[Y+3]-7 x[Y+3]=-19
[X-7]x[Y+3]=-19
do X,Y thuoc Z nen ta co bang ia tri la:
X-7 1 -1 -19 19
Y+3 -19 19 1 -1
X 8 6 -12 26
Y -22 16 -2 -4
\(3x^2y-7y=5x^2-84\)
=>\(9x^2y-21y=15x^2-252\)
=> \(3x^2\left(3y-5\right)-7\left(3y-5\right)=-217\)
=> \(\left(3y-5\right)\left(3x^2-7\right)=\left(-7\right).31=7\left(-31\right)=1\left(-217\right)=217\left(-1\right)\)
Đến đây bạn tự lập bảng ra xét nhé
3x + 4y - xy = 16
<=> x(3 - y) + 4y = 16
<=> x(3 - y) - 12 + 4y = 16 - 12
<=> x(3 - y) - 4(3 - y) = 4
<=> (x - 4)(3 - y) = 4
=> x - 4 thuộc tập hợp ước của 4
Mà 4 = 1.4 = -1.(-4)
Ta có bảng:
x - 4 | 1 | 4 | -1 | -4 |
3 - y | 4 | 1 | -4 | -1 |
x | 5 | 8 | 3 | 0 |
y | -1 | 2 | 7 | 4 |
Vậy các cặp (x;y) thỏa mãn đề bài là (5;-1), (8;2), (3;7), (0;4)
Tik cho mình nhá!!
Lời giải:
$(x+1)^2+(y+1)^2+(x-y)^2=2$
Vì $(y+1)^2, (x-y)^2\geq 0$ nên:
$(x+1)^2=2-(y+1)^2-(x-y)^2\leq 2$
Mà $(x+1)^2$ là scp nên $(x+1)^2=0$ hoặc $(x+1)^2=1$
TH1: $(x+1)^2=0\Rightarrow x=-1$
Khi đó: $(y+1)^2+(-1-y)^2=2$
$\Rightarrow 2(y+1)^2=2\Rightarrow (y+1)^2=1$
$\Rightarrow y+1=1$ hoặc $y+1=-1$
$\Rightarrow y=0$ hoặc $y=-2$ (thỏa mãn)
TH2: $(x+1)^2=1\Rightarrow x+1=1$ hoặc $x+1=-1$
$\Rightarrow x=0$ hoặc $x=-2$
Nếu $x=0$ thì:
$1+(y+1)^2+(-y)^2=2$
$\Rightarrow 2y^2+2y=0$
$\Rightarrow 2y(y+1)=0\Rightarrow y=0$ hoặc $y=-1$
Nếu $x=-2$ thì:
$1+(y+1)^2+(-2-y)^2=2$
$\Rightarrow 2y^2+6y+4=0$
$\Rightarrow y^2+3y+2=0$
$\Rightarrow (y+1)(y+2)=0\Rightarrow y=-1$ hoặc $y=-2$
Vậy $(x,y)=(-1,0), (-1,-2), (0,0), (0,-1), (-2, -1), (-2,-2)$