Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy \(2y^2+1\)là số lẻ \(\Rightarrow x^2\)là số lẻ\(\Rightarrow\)x là số lẻ nên x=2k+1 với k là số tự nhiên khác 0.\(\Rightarrow2y^2+1=\left(2k+1\right)^2\Leftrightarrow2y^2+1=4k^2+4k+1\)\(\Rightarrow2y^2=4\left(k^2+k\right)\Rightarrow y^2=2\left(k^2+k\right)\)\(\Rightarrow\)y chẵn \(\Rightarrow\)y=2 \(\Rightarrow\)x=3
x2-2y2=1
=>x2-1=2y2
=>x2-12=2y2
=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2
Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
do đó x=2+1=>x=3
Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)
=> (y + 2).x2 + 1 - 4 = y2 - 4
=> (y+2).x2 - 3 = (y - 2)(y+2)
=> (y+2)x2 - (y+2).(y - 2) = 3
=> (y+2)(x2 - y + 2) = 3
=> y + 2 \(\in\) Ư(3) = {3;-3;1;-1}
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
x2 -y + 2 | 1 | -1 | 3 | -3 |
x2 | 0 | -8 | 0 | -8 |
x | 0 | loại | 0 | loại |
Vậy (x;y) = (0;1); (0;-1)
x2-2y2=1
xét y=2=>x2=1+2.22=9=32
=>x=3(t/mãn)
xét y=3=>x2=32.2+1=19(loại)
xét y>3
=>y không chia hết cho 3
=>y2 chia 3 dư 1
=>2y2 chia 3 dư 2
=>x2 chia hết cho 3
=>x chia hết cho 3
=>x là hợp số(trái giả thuyết)
=>x=3;y=2
Vậy (x;y)=(3;2)
Ta có: \(\hept{\begin{cases}|x|\ge0\\|y|\ge0\end{cases}\forall x;y}\)
Vì x;y là số nguyên nên x, y>0
Theo bài ra ta có:x=6y(1)
=> x-y=60(2)
(1)(2) => 6y-y=60
=> 5y=60
=> y=12
=> x=12 x 6=72
Vậy x=72; y=12
\(3x^2y-7y=5x^2-84\)
=>\(9x^2y-21y=15x^2-252\)
=> \(3x^2\left(3y-5\right)-7\left(3y-5\right)=-217\)
=> \(\left(3y-5\right)\left(3x^2-7\right)=\left(-7\right).31=7\left(-31\right)=1\left(-217\right)=217\left(-1\right)\)
Đến đây bạn tự lập bảng ra xét nhé
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
Lời giải:
$(x+1)^2+(y+1)^2+(x-y)^2=2$
Vì $(y+1)^2, (x-y)^2\geq 0$ nên:
$(x+1)^2=2-(y+1)^2-(x-y)^2\leq 2$
Mà $(x+1)^2$ là scp nên $(x+1)^2=0$ hoặc $(x+1)^2=1$
TH1: $(x+1)^2=0\Rightarrow x=-1$
Khi đó: $(y+1)^2+(-1-y)^2=2$
$\Rightarrow 2(y+1)^2=2\Rightarrow (y+1)^2=1$
$\Rightarrow y+1=1$ hoặc $y+1=-1$
$\Rightarrow y=0$ hoặc $y=-2$ (thỏa mãn)
TH2: $(x+1)^2=1\Rightarrow x+1=1$ hoặc $x+1=-1$
$\Rightarrow x=0$ hoặc $x=-2$
Nếu $x=0$ thì:
$1+(y+1)^2+(-y)^2=2$
$\Rightarrow 2y^2+2y=0$
$\Rightarrow 2y(y+1)=0\Rightarrow y=0$ hoặc $y=-1$
Nếu $x=-2$ thì:
$1+(y+1)^2+(-2-y)^2=2$
$\Rightarrow 2y^2+6y+4=0$
$\Rightarrow y^2+3y+2=0$
$\Rightarrow (y+1)(y+2)=0\Rightarrow y=-1$ hoặc $y=-2$
Vậy $(x,y)=(-1,0), (-1,-2), (0,0), (0,-1), (-2, -1), (-2,-2)$