Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{bc+ac+ab}{abc}\)
Vì \(\frac{bc+ac+ab}{abc}\)= 1 nên bc + ac + ab = abc. Suy ra a = 1 thì b = 2, c = 3 hoặc b = 3, c = 2; a = 2 thì b = 1, c = 3 hoặc b = 3, c = 1; a = 3 thì b = 2, c = 1 hoặc b = 1, c = 2
Ta có :
a > b => \(\frac{1}{a}< \frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}< 0\)
a > b => a - b > 0 \(\Rightarrow\frac{1}{a-b}>0\)
Từ 2 ý trên và theo giả thuyết đề bài thì không tồn tại 2 giá trị a,b > 0 thõa mãn
từ giả thiết=> 2/b=a/5-2/15=(3a-2)/15
=>b/2=15/(3a-2) (nghịch đảo hai vế)
=>b=30/(3a-2)
để b là số tự nhiên thì:
a=1 =>b=30 => tích ab=30
a=4 =>b=3 => tích ab=12
KL: tích ab lớn nhất =30
Theo đề bài ta có \(\frac{a}{b}< 1\).
\(\Rightarrow\frac{a+m}{b+m}< 1\)(vì \(\frac{a}{b}< 1\))
Khi \(\frac{a+m}{b+m}< 1\)ta có \(\frac{a}{b}+m\)
\(\Leftrightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
a)
\(x.\frac{7}{9}=\frac{2}{3}+2\frac{1}{2}\)
\(x.\frac{7}{9}=\frac{19}{6}\)
\(x=\frac{19}{6}:\frac{7}{9}\)
\(x=\frac{57}{14}\)
b) \(\frac{5}{7}+x:\frac{9}{4}=\frac{4}{3}\)
\(x:\frac{9}{4}=\frac{4}{3}-\frac{5}{7}\)
\(x:\frac{9}{4}=\frac{13}{21}\)
\(x=\frac{13}{21}.\frac{9}{4}\)
\(x=\frac{39}{28}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{5}{9}\)
Mà \(\frac{5}{9}=\frac{10}{18}=\frac{1}{18}+\frac{9}{18}=\frac{1}{18}+\frac{1}{2}\)
Vậy a = 18 và b = 2 hoặc a = 2 và b = 18.