K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Ta có: \(\hept{\begin{cases}x^2+2ax+b=\left(x-1\right)A\left(1\right)\\x^2+2ax+b=\left(x+2\right)B+4\left(2\right)\end{cases}}\)

Thay x=1 vào (1) rồi thay x=-2 vào (2) ta được:

\(\hept{\begin{cases}1+2a+b=0\\4-4a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}2a+b=-1\\-4a+b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{-1}{6}\\b=-\frac{4}{6}\end{cases}}}\)

12 tháng 4 2022

-Áp dụng định lí Bezout:

\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)

\(\Rightarrow1+6+7-a+b=0\)

\(\Rightarrow a-b=14\left(1\right)\)

\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)

\(\Rightarrow16+48+28-2a+b=12\)

\(\Rightarrow2a-b=80\left(2\right)\)

-Từ (1) và (2) suy ra: \(a=66;b=52\)

13 tháng 4 2022

bạn ơi, tại sao lại là P(-2) ạ??

 

3 tháng 11 2019

Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

-1 và 1 là hai nghiệm của đa thức \(x^2-1\)

Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)

Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)

Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)

Vậy a = -2, b = 1

24 tháng 12 2016

a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)

Để f(x) chia hết cho x + 2 thì f(-2)=0

\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)

\(-8+4+2+a=0\)

\(a-2=0\)

\(a=2\)

Vậy ...

24 tháng 12 2016

c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)

\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)

\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)

\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)

\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)

Vậy ...

11 tháng 11 2017

a) Để P(x) chia hết cho Q(x)=2x-1 thì \(P(\dfrac{1}{2})\)=0

<=> \(P(\dfrac{1}{2})= a.(\dfrac{1}{2})^{3} -3.(\dfrac{1}{2})^{2} +a.\dfrac{1}{2}-1=0\)

<=> \(a.\dfrac{1}{8} -\dfrac{3}{4}+a.\dfrac{1}{2}-1=0\)

<=> \(\dfrac{5}{8}.a = \dfrac{7}{4}\)

<=> \(a= \dfrac{14}{5}\)

Vậy \(a=\dfrac{14}{5} thì\) P(x) chia hết cho Q(x)

Chúc bạn học tốt!!!!!😄

11 tháng 11 2017

mình cảm ơn bạn đã giúp mình giải bài toán này

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1