K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

ta thấy :g(x)=x2+3x-10=(x-2)(x+5)

suy ra g(x)có 2 nghiệm là x=2&x=-5.muốn f(x) chia hết cho g(x) thì f(x) cx phải chia hết cho (x-2)&(x+5).

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(5\right)=0\end{cases}}\)

suy ra \(\hept{\begin{cases}8a+4b-40=0\\-125a+25b-25=0\end{cases}}\)vậy a=1 ;b=8

3 tháng 11 2019

Đa thức \(x^2+3x-10\)có nghiệm \(\Leftrightarrow x^2+3x-10=0\)

Ta có: \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)

\(\Rightarrow x_1=\frac{-3-7}{2}=-5;x_2=\frac{-3+7}{2}=2\)

-5 và 2 là hai nghiệm của đa thức \(x^2+3x-10\)

Để  f(x)=ax3+bx2+5x-50 chia hết  cho đa thức x2+3x-10 thì -5 và 2 cũng  là hai nghiệm của đa thức f(x)=ax3+bx2+5x-50

Nếu x = -5 thì \(-125a+25b-25+50=0\Leftrightarrow5a-b=-1\)(1)

Nếu x = 2 thì \(8a+4b+10-50=0\Leftrightarrow2a+b=10\)(2)

Lấy (1) + (2), ta được: \(7a=9\Leftrightarrow a=\frac{9}{7}\)

\(\Rightarrow b=10-2.\frac{9}{7}=\frac{52}{7}\)

Vậy \(a=\frac{9}{7}\)và \(b=\frac{52}{7}\)

24 tháng 8 2017

Ta có:

\(x^2+3x-10=x^2-2x+5x-10\)

\(=x\left(x-2\right)+5\left(x-2\right)\)

\(=\left(x-2\right)\left(x+5\right)\)

Để \(f\left(x\right)=ax^3+bx^2+5x-50\) chia hết cho \(x^3+3x-10\) thì

\(\left\{{}\begin{matrix}f\left(2\right)=8a+4b+10-50=0\\f\left(-5\right)=-125a+25b-25-50=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a+4b=40\\-125a+25b=75\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(2a+b\right)=40\\-25\left(5a+b\right)=75\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=10\\5a+b=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{13}{3}\\b=\dfrac{56}{3}\end{matrix}\right.\)

24 tháng 8 2017

Xác định các hằng số a và b nha

14 tháng 11 2017

Gọi thương của phép chia là C(x)

ax3+bx2+5x-50 = (x2+3x-10).C(x)

\(\Rightarrow\) ax3+bx2+5x-50 = (x-2)(x+5) . C(x)

Vì đẳng thức đúng với mọi x nên xét x=2, x=-5 nên đẳng thức biến đổi như sau :

\(\Rightarrow\left\{{}\begin{matrix}8a+4b-40=0\\-125a+25b-75=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}8a+4b=40\\-125a+25b=75\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2a+b=10\\5a-b=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)

Vậy với a=1,b=8 thì ax3+bx2+5x-50 chia hết x2+3x-10

6 tháng 11 2019

taị sao lại ra được a =1 b=8 vậy

bạn giải thích cho mình với

5 tháng 12 2014

Ko bt bạn có sai đề ko? Chứ như vậy ko tồn tại a, b

18 tháng 8 2017

Giải theo kiểu hệ số bất định

Đặt ax3 +bx2+5x-50

=(x2+3x-10).(cx+ d)

=cx3 + ( d+3c).x2 +(3d - 10c).x -10d

=>a=c; b=d+3c; 5=3d-10c; -50=-10d;

=> a=1; b=8;

Vậy ...