Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải theo kiểu hệ số bất định
Đặt ax3 +bx2+5x-50
=(x2+3x-10).(cx+ d)
=cx3 + ( d+3c).x2 +(3d - 10c).x -10d
=>a=c; b=d+3c; 5=3d-10c; -50=-10d;
=> a=1; b=8;
Vậy ...
Ta có:
\(x^2+3x-10=x^2-2x+5x-10\)
\(=x\left(x-2\right)+5\left(x-2\right)\)
\(=\left(x-2\right)\left(x+5\right)\)
Để \(f\left(x\right)=ax^3+bx^2+5x-50\) chia hết cho \(x^3+3x-10\) thì
\(\left\{{}\begin{matrix}f\left(2\right)=8a+4b+10-50=0\\f\left(-5\right)=-125a+25b-25-50=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+4b=40\\-125a+25b=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(2a+b\right)=40\\-25\left(5a+b\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=10\\5a+b=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{13}{3}\\b=\dfrac{56}{3}\end{matrix}\right.\)
ta thấy :g(x)=x2+3x-10=(x-2)(x+5)
suy ra g(x)có 2 nghiệm là x=2&x=-5.muốn f(x) chia hết cho g(x) thì f(x) cx phải chia hết cho (x-2)&(x+5).
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(5\right)=0\end{cases}}\)
suy ra \(\hept{\begin{cases}8a+4b-40=0\\-125a+25b-25=0\end{cases}}\)vậy a=1 ;b=8
Đa thức \(x^2+3x-10\)có nghiệm \(\Leftrightarrow x^2+3x-10=0\)
Ta có: \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)
\(\Rightarrow x_1=\frac{-3-7}{2}=-5;x_2=\frac{-3+7}{2}=2\)
-5 và 2 là hai nghiệm của đa thức \(x^2+3x-10\)
Để f(x)=ax3+bx2+5x-50 chia hết cho đa thức x2+3x-10 thì -5 và 2 cũng là hai nghiệm của đa thức f(x)=ax3+bx2+5x-50
Nếu x = -5 thì \(-125a+25b-25+50=0\Leftrightarrow5a-b=-1\)(1)
Nếu x = 2 thì \(8a+4b+10-50=0\Leftrightarrow2a+b=10\)(2)
Lấy (1) + (2), ta được: \(7a=9\Leftrightarrow a=\frac{9}{7}\)
\(\Rightarrow b=10-2.\frac{9}{7}=\frac{52}{7}\)
Vậy \(a=\frac{9}{7}\)và \(b=\frac{52}{7}\)
Gọi thương của phép chia là C(x)
ax3+bx2+5x-50 = (x2+3x-10).C(x)
\(\Rightarrow\) ax3+bx2+5x-50 = (x-2)(x+5) . C(x)
Vì đẳng thức đúng với mọi x nên xét x=2, x=-5 nên đẳng thức biến đổi như sau :
\(\Rightarrow\left\{{}\begin{matrix}8a+4b-40=0\\-125a+25b-75=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8a+4b=40\\-125a+25b=75\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2a+b=10\\5a-b=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)
Vậy với a=1,b=8 thì ax3+bx2+5x-50 chia hết x2+3x-10
taị sao lại ra được a =1 b=8 vậy
bạn giải thích cho mình với