K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

\(x^2-2x+1=\left(x-1\right)^2\)

Áp dụng định lý Bezout:

Đa thức f(x) = x- 3x + a chia hết cho đa thức x- 2x + 1

\(\Leftrightarrow f\left(1\right)=1-3+a=0\)

\(\Leftrightarrow a=2\)

Vậy a = 2 thì đa thức x- 3x + a chia hết cho đa thức x- 2x + 1

18 tháng 7 2018

Chỉ cần chia ra và có kết quả cuối cùng thì tính như bình thường thôi bạn.

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

21 tháng 7 2015

Vì 2.3 - 3.2 + x + a chia hết cho x + 2 

=> 2.3 - 3.2 + x+ a = ( x + 2).q

thay x = -2 vào ta có:

       2.3 - 3.2 - 2 + a = ( -2 + 2 ).q

=> 8 - 9 - 2 +a   = 0 

=> -19  +a = 0 

=> a = 19 

Vậy a = 19

1 tháng 11 2017

2x^3-3x^2+x+a=2x^2(x+2)-7x^2+x+a=2x^2(x+2)-7x(x+2)+15x+a=2x^2(x+2)-7x(x+2)+15(x+2)+a-30=(x+2)(2x^2-7x+15)+a-30

vì (x+2)(2x^2-7x+15) chia hết x+2

suy ra a-30=0

suy ra a=30

14 tháng 12 2017

Bài làm tg tự

22 tháng 12 2020

a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)

Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)

b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)

Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)

20 tháng 5 2016

x^4 -x^3+6x^2-x+a x^2-x+5 x^2 x^4-x^3+5x^2 x^2 +1 x^2 -x+a -x+5 a-5

\(x^4-x^3+6x^2-x+a=\left(x^2+1\right)\left(x^2-x+5\right)+a-5\)

Để đa thức \(x^4-x^3+6x^2-x+a\) chia hết cho đa thức \(x^2-x+5\) 

\(\Rightarrow a-5=0\Leftrightarrow a=5\)

b, Đặt \(2x^3-3x^2+x+a=f\left(x\right)\) và \(x+2=g\left(x\right)\)

Theo dịnh lí Bơ du ta có 

Xét \(g\left(x\right)=0\Rightarrow x+2=0\Rightarrow x=-2\)

Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(f\left(-2\right)=0\)

\(f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2-2+a=0\)

\(\Rightarrow f\left(x\right)=-16-12-2+a=0\)

\(\Rightarrow f\left(x\right)=-30+a=0\)

\(\Rightarrow a=30\)

Vậy \(a=30\) thì \(f\left(x\right)\) chia hết cho \(g\left(x\right)\)

20 tháng 5 2016

Câu b) Thay x=-2 vào rồi giải theo phương pháp giá trị riêng