K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2020

a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)

Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)

b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)

Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)

23 tháng 12 2021

Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)

Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)

\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)

\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)

\(f\left(-2\right)=-16-12-2+a\)

\(f\left(-2\right)=-20+a\)

Để \(f\left(x\right)\) chia hết cho \(x+2\) thì  \(R=0\) hay \(f\left(-2\right)=0\)

\(\Rightarrow-20+a=0\Leftrightarrow a=20\)

 

24 tháng 11 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Để có phép chia hết thì số dư phải bằng 0.

Ta có: a – 5 = 0 hay a = 5.

25 tháng 10 2018

Hay  a − 1 = 0 b + 30 = 0 ⇒ a = 1 b = − 30 .

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

NV
22 tháng 12 2022

\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)

Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)

\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)

\(\Rightarrow a=5\)

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

22 tháng 12 2021

Câu b đề thiếu rồi bạn

22 tháng 12 2021

a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)

=>a=2

19 tháng 12 2020

x^4 - x^3 + 6x^2 - x + n x^2 - x + 5 x^2 + 1 x^4 - x^3 + 5x^2 x^2 - x + n x^2 - x + 5 n - 5

Để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì

\(n-5=0\Rightarrow n=5\)

Vậy để \(x^4-x^3+6x^2-x+n⋮x^2-x+5\) thì \(n=5\)

Chọn C