Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. \(a^2+31a-1984=k^2\Rightarrow4a^2+124a+62^2-k^2=1528\)
\(\Rightarrow\left(2a+62\right)^2-k^2=1628\Rightarrow\left(2a+62+k\right)\left(2a+62-k\right)=1628\)
Tương tự phần trên ta tìm được \(a\in\left\{12;33;48;97;176;332;565;1728\right\}\)
a. Để \(a^2+a+43\) là số chính phương thì \(a^2+a+43=k^2\Rightarrow4a^2+4a+172=4k^2\)
\(\Rightarrow\left(4a^2+4a+1\right)-4k^2=-171\Rightarrow\left(2a+1\right)^2-4k^2=-171\)
\(\Rightarrow\left(2a+1-2k\right)\left(2a+1+2k\right)=-171\)
2a+1-2k | -1 | -3 | -9 | -19 | -57 | -171 |
2a+1+2k | 171 | 57 | 19 | 9 | 3 | 1 |
a | 42 | 13 | 2 | -3 | -14 | -43 |
k | 43 | 15 | 7 | 7 | 15 | 43 |
Vậy \(a\in\left\{2;13;42\right\}\)
Câu 1 đặt cái đó bằng k^2 rồi có (k-a)(k+a)=2004 rồi xét trường hợp
Câu 2 đặt 4a^2+2018=k^2.Dễ thấy k^2 chia hết 2 nên k^2 chia hết cho 4.Mà 4a^2 chia hết 4 và 2018 ko chia hết 4 nên suy ra vô lí
\(a^2-19=b^2\Leftrightarrow a^2-b^2=19\Rightarrow\left(a-b\right)\left(a+b\right)=1.19=19.1\)
\(\hept{\begin{cases}a-b=1\\a+b=19\end{cases}}\Leftrightarrow\hept{\begin{cases}a=10\\b=9\end{cases}}\)
DS: a=10
Tìm số tự nhiên a để biểu thức P = a^2 - 19 là số chính phương
P = 81
a = 10
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
a) Ta có: x2 -2x-11 = (x2-2x+1)-12 = (x-1)2-12
Vì x2-2x-11 là SCP nên đặt x2-2x-11=k2
Suy ra (x-1)2-k2=12
\(\Leftrightarrow\) (x-1-k)(x-1+k)=12
Vì x,k \(\in\) Z nên dễ thấy (x-1-k)(x-1+k) cùng tính chẵn lẽ. Mà 12 chẵn
Suy ra x-1-k và x-1+k đều chẵn
Do đó từ 12=2.6 ta được x-1=4 và k=2.
Vậy x=5. Thử lại x2-2x-11=4 (đúng)
Bạn kẹp a^2+a+43 giữa a^2 và (a+7)^2 rồi xét tất cả các trường hợp ở giữa.Tìm đc a=2,13,42