Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta thấy: \(\left\{{}\begin{matrix}\left|x+2008\right|\ge0\\\left|2010+x\right|\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow\left|x+2008\right|+\left|2010+x\right|\ge0\forall x\)
\(\Rightarrow4x\ge0\Rightarrow x\ge0\).Do vậy ta biến đổi pt như sau
\(x+2008+2010+x=4x\)
\(\Leftrightarrow2x+4018=4x\)
\(\Leftrightarrow2x=4018\Leftrightarrow x=2009\)
Bài 3: x z O y t u
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^o\) (kề bù)
Vì Ot là tia phân giác \(\widehat{xOy}\)\(\Rightarrow\widehat{xOt}+\widehat{tOy}=\widehat{xOy}\) hay\(\dfrac{1}{2}\widehat{xOy}=\widehat{xOt}\)
Ou là tia phân giác \(\widehat{yOz}\)\(\Rightarrow\widehat{yOu}+\widehat{uOz}=\widehat{yOz}\) hay \(\dfrac{1}{2}\widehat{yOz}=\widehat{yOu}\)
Mà \(\widehat{xOt}+\widehat{yOu}=\widehat{uOt}\)
\(\Rightarrow\dfrac{1}{2}\widehat{xOy}+\dfrac{1}{2}\widehat{yOz}=\widehat{uOt}\)
\(\Rightarrow\dfrac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\widehat{uOt}\)
Mà \(\widehat{xOy}+\widehat{yOz}=180^o\) (kề bù)
\(\Rightarrow\dfrac{1}{2}\cdot180^o=\widehat{uOt}\)
\(\Rightarrow\widehat{uOt}=\dfrac{1}{2}\cdot180^o=90^o\)
\(\frac{654}{12254}=\frac{12254-11600}{12254}=1+\frac{-11600}{12254}=1+\frac{1}{\frac{12254}{-11600}}=1+\frac{1}{1+\frac{23854}{-11600}}=1+\frac{1}{1+\frac{1}{-\frac{11600}{23854}}}=\)sức gõ công thức có hạn, cứ theo đó mà làm tiếp, đảm bảo sẽ ra ngay kết quả
đúng nha bạn
bài 1
\(A=\left(\dfrac{3}{8}+\dfrac{1}{4}+\dfrac{5}{12}\right):\dfrac{7}{8}\)
\(A=\dfrac{9+6+10}{24}:\dfrac{7}{8}=\dfrac{25}{24}.\dfrac{8}{7}=\dfrac{25.1}{3.7}=\dfrac{25}{21}\)
\(B=\dfrac{1}{4}:\left(10,3-9,8\right)-\dfrac{3}{4}\)
\(B=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)
\(B=\dfrac{1}{4}.2-\dfrac{3}{4}\)
\(B=\dfrac{1}{2}-\dfrac{3}{4}=-\dfrac{1}{4}\)
\(M=-\dfrac{5}{7}.\dfrac{2}{11}+\dfrac{5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
\(M=-\dfrac{5}{7}\left(-\dfrac{2}{11}+\dfrac{9}{11}\right)+1\dfrac{5}{7}\)
\(M=-\dfrac{5}{7}.\dfrac{7}{11}+\dfrac{12}{7}\)
\(M=-\dfrac{5}{11}+\dfrac{12}{7}=\dfrac{97}{77}\)
\(N=\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2\)
\(N=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3.4}{16}\)
\(N=\dfrac{6}{7}+\dfrac{1}{8}-\dfrac{3}{4}=\dfrac{6}{7}-\dfrac{5}{8}=\dfrac{13}{56}\)
Bài 1:
a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{2}{4}\)
\(=\dfrac{3}{4}\)
b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)
\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)
\(=\dfrac{1}{2}+\dfrac{4}{5}\)
\(=\dfrac{5}{10}+\dfrac{8}{10}\)
\(=\dfrac{9}{5}\)
c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)
\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)
\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)
\(=\dfrac{7}{3}+\dfrac{28}{3}\)
\(=\dfrac{35}{3}\)
d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)
\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)
\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)
\(=\dfrac{1}{6}-\dfrac{7}{2}\)
\(=\dfrac{1}{6}-\dfrac{21}{6}\)
\(=\dfrac{-10}{3}\)
e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)
\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\dfrac{2}{3}\)
f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{3}{2}\)
\(=\dfrac{2}{2}=1\)
g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)
\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{2}{4}-\dfrac{3}{4}\)
\(=\dfrac{-1}{4}\)
h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)
\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{9}{28}\)
\(=\dfrac{196}{140}-\dfrac{45}{140}\)
\(=\dfrac{151}{140}\)
i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)
\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)
\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)
\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)
k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)
\(=-\dfrac{2}{3}\)
\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)
\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)
\(A=\dfrac{1}{8}.1.20\)
\(A=\dfrac{20}{8}=\dfrac{5}{2}\)
\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)
\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)
\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)
\(B=\left(16+1\right)+4,03\)
\(B=17+4,03\)
\(B=21,03\)
\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)
\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)
\(C=390.\dfrac{15}{78}\)
\(C=75\)
\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)
<=> \(\dfrac{2xy}{18y}-\dfrac{54}{18y}=\dfrac{y}{18y}\)
<=> 2xy - 54 = y
<=> 2xy - y = 54
<=> y(2x - 1) = 54
Do x; y \(\in Z\Rightarrow2x-1\in Z\)
Mà y(2x - 1) = 54
=> y; 2x - 1 \(\inƯ\left(54\right)\)
Ta thấy 2x - 1 lẻ => 2x - 1 = 1; 3; 9; 27
Nếu \(\left\{{}\begin{matrix}2x-1=1\\y=54\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\y=54\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=54\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}2x-1=3\\y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y=18\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=18\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}2x-1=9\\y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=10\\y=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\) (thảo mãn)
Nếu \(\left\{{}\begin{matrix}2x-1=27\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=28\\y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=2\end{matrix}\right.\)
Vậy các cặp (x; y) thỏa mãn là (1; 54); (2; 18); (5; 6); (14; 2)
@Yuuki Asuna
1.2. Do n là số nguyên tố lớn hơn 3 => n lẻ => n2 lẻ => n2 + 2015 chẵn => n2 + 2015 là hợp số