Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Sửa lại đề thành: Cho 4 số tự nhiên liên tiếp biết tích của 2 số thứ 2 và thứ 4 lớn hơn tích của 2 số thứ nhất và thứ \(3\) là 11 . tìm 4 số đó
Gọi 4 số tự nhiên liên tiếp đó là: (a-1);a;(a+1);(a+2).
Tích số thứ 2 và thứ 4 là: a(a+2) = a^2 + 2a
Tích của số thứ 1 và thứ 3 là: (a-1)(a+1) = a^2-1
Hiệu 2 tích là 11 nên (a^2 + 2a) - (a^2 - 1) = 11 => a = 5.
Vậy 4 số đó là: 4;5;6;7
Đặt 4 số lẻ liên tiếp cần tìm là \(x+1,x+3,x+5,x+7\)
Ta có:
\(\left(x+3\right)\left(x+7\right)-\left(x+1\right)\left(x+5\right)=88\)
\(\Leftrightarrow x^2+10x+21-x^2-6x-5=88\)
\(\Leftrightarrow4x+16=88\)
\(\Leftrightarrow4x=72\)
\(\Leftrightarrow x=18\)
Suy ra 4 số đó lần lượt là 19, 21, 23, 25.
4 số nguyên liên tiếp là a;b;c;d theo đề bài
có thể xảy ra 2 trường hợp
+ a chẵn; b lẻ; c chẵn; d lẻ => bd-ac lẻ
+ a lẻ; b chẵn; c lẻ; d chẵn => bd-ac lẻ
Nhưng theo đề bài hiệu 2 tích trên =90 chẵn
=> ĐỀ BÀI SAI
Nguyễn Ngọc Minh Anh cảm ơn bn nhưng đề bài ko sai mà là bn sai
vì mik lm ra đc là 48,49,50,51 và nó cx là kết quả đúng
4 số tự nhiên liên tiếp là n; (n+1); (n+2); (n+3).
Theo đề bài ta có
\(\left(n+1\right).\left(n+3\right)-n.\left(n+1\right)=11\)
\(\Leftrightarrow3.n=8\) xem lại đề bài
Gọi 4 số lẻ đó là (2k + 1), (2k + 3), (2k + 5), (2k + 7)
(2k + 3)(2k + 7) - (2k + 1)(2k + 5) = 88
<=> 8k - 72 = 0
<=> k = 9
=> Số lẻ nhỏ nhất đó là 2.9 + 1 = 19
Gọi số thứ nhất là 2a-3 số thứ 2 là 2a -1 số thứ 3 là 2a+1 số thứ 4 là 2a+3
theo bài ra ta có \(\left(2a-1\right)\left(2a+3\right)=\left(2a-3\right)\left(2a+1\right)+88\)
\(4a^2+4a-3=4a^2-4a-3+88\)
8a=88
=>a=11
Vậy số lẻ nhỏ nhất là 19
Gọi 4 số nguyên liên tiếp lần lượt là a,a+1,a+2,a+3 (a thuộc Z)
Ta có: a(a+2) - (a+1)(a+3) = 13
<=> a2+2a-a2-3a-a-3=13
<=>-2a-3=13
<=>-2a=16
<=>a=-8
=>\(\hept{\begin{cases}a+1=-8+1=-7\\a+2=-8+2=-6\\a+3=-8+3=-5\end{cases}}\)
Vậy...