K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

Ta có : 2m + 2n = 2m+n = 2m . 2n

=> 2m - 2m . 2n + 2n = 0

=>  2m - 2m . 2n + 2n - 1 = -1

=> (2m - 1)(2n - 1) = 1 
Do m,n là số tự nhiên nên 2m - 1 và 2n - 1 là ước dương của 1 
hay đồng thời xảy ra 2- 1 = 1 và 2n - 1 = 1 => m = n = 1

Vậy m = 1 và n = 1

4 tháng 4 2017

k em nha em mới lớp 5

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

3 tháng 3 2020

Ta có : \(2^m+2^n=2^{m+n}\)

\(\Leftrightarrow\frac{2^m+2^n}{2^{m+n}}=1\)

\(\Leftrightarrow\frac{1}{2^n}+\frac{1}{2^m}=1\)

+) Xét \(m=0\Rightarrow\frac{1}{2^0}+\frac{1}{2^n}>1\) ( loại )

+) Xét \(m=1\Rightarrow\frac{1}{2^m}=\frac{1}{2}\Rightarrow n=1\) ( thỏa mãn)

+) Xét \(m>1\Rightarrow\frac{1}{2^m}< \frac{1}{2},\frac{1}{2^n}< \frac{1}{2}\Rightarrow\frac{1}{2^m}+\frac{1}{2^n}< 1\) ( Do n là số tự nhiên, loại )

Vậy : \(m=1,n=1\) thỏa mãn đề.

3 tháng 3 2020

\(2^m+2^n=2^{m+n}\)\(\Leftrightarrow2^{m+n}-\left(2^m+2^n\right)=0\)

\(\Leftrightarrow2^{m+n}-2^m-2^n=0\)\(\Leftrightarrow\left(2^{m+n}-2^m\right)-2^n+1=1\)

\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1\)

Vì m , n là số tự nhiên \(\Rightarrow2^m-1\)và \(2^n-1\)cũng là số tự nhiên

\(\Rightarrow\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2^m=2\\2^n=2\end{cases}}\Leftrightarrow m=n=1\)

Vậy \(m=n=1\)

23 tháng 1 2018

2m + 2n = 2m+n

\(\Leftrightarrow\)2m+n - 2m - 2n = 0

\(\Leftrightarrow\)2m . ( 2n - 1 ) - ( 2n - 1 ) = 1

\(\Leftrightarrow\)( 2n - 1 ) . ( 2m - 1 ) = 1

\(\Leftrightarrow\)\(\hept{\begin{cases}2^n-1=1\\2^m-1=1\end{cases}}\)

\(\Leftrightarrow\)m = n = 1

Vậy ...