Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)
b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)
a)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}=\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\)
MTC: \(2\left(x-1\right)\left(x+1\right)\left(x-5\right)\)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}\\ =\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}=\dfrac{2\left(x+1\right)\left(3x-6\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x-5\right)\left(5x-5\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
a) \(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{-1}{x-1}\)
\(=\dfrac{x^3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{-1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^4-x+x^3+x+x-1-x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^4+x^3}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3}{x-1}\)
b) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
\(=\dfrac{x^3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^3\left(x+1\right)-x^2\left(x-1\right)-1\left(x+1\right)+1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^4+x^3-x^3+x^2-x-1+x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^4+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
c) \(\dfrac{4-2x+x^2}{2+x}-2-x\)
\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{2\left(2+x\right)}{2+x}-\dfrac{x\left(2+x\right)}{2+x}\)
\(=\dfrac{4-2x+x^2-4-2x-2x-x^2}{2+x}\)
\(=\dfrac{-6x}{2+x}\)
Còn lại thì dễ rồi, bạn tự làm nha ^^
bạn ơi tại sao lại bằng 2x +6, bạn có thể giải đáp cho mình đc ko
1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)
\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)
=>-4x=-2
hay x=1/2
2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)
=>21x=-50
hay x=-50/21
3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)
\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0(nhận) hoặc x=5(loại)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)