Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-8y}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{\left(2x+y\right)\left(2x+y\right)-8yx+\left(2x-y\right)\left(2x-y\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{8x^2-8xy+2y^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(4x^2-4xy+y^2\right)}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)^2}{x\left(2x+y\right)\left(2x-y\right)}\)
\(=\dfrac{2\left(2x-y\right)}{x\left(2x+y\right)}\)
b) \(\dfrac{1}{x^2+3x+2}+\dfrac{2x}{x^2+4x+3}+\dfrac{1}{x^2+5x+6}\)
\(=\dfrac{1}{x^2+x+2x+2}+\dfrac{2x}{x^2+x+3x+3}+\dfrac{1}{x^2+2x+3x+6}\)
\(=\dfrac{1}{x\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{x\left(x+1\right)+3\left(x+1\right)}+\dfrac{1}{x\left(x+2\right)+2\left(x+2\right)}\)
\(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{2x}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x\left(x+2\right)+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{x+3+2x^2+4x+x+1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x+4}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x^2+3x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{2}{x+3}\)
a ) \(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)
\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}=\dfrac{x+6}{2\left(x+3\right)}=\dfrac{x+3+3}{2\left(x+3\right)}=\dfrac{1}{2}+\dfrac{3}{2\left(x+3\right)}\)
b ) \(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\)
\(=\dfrac{2x}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x-1}\)
\(=\dfrac{2x-x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
c ) \(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\)
\(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)
\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
a) \(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)
\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{x+6}{2x\left(x+3\right)}\)
b) \(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\)
\(=\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\)
\(=\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\)
\(=\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\)
\(=\dfrac{1}{x+1}\)
c) \(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\)
\(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)
\(=\dfrac{y-x}{xy\left(y-x\right)}\)
\(=\dfrac{1}{xy}.\)
a: \(=\dfrac{x^2-1-3x^2+3+2x^2+7}{2x-y}=\dfrac{9}{2x-y}\)
b: \(=\dfrac{x+y+x-y+2x-3y}{1-xy}=\dfrac{4x-3y}{1-xy}\)
a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)
b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)
\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)
a: \(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
d: \(=\dfrac{x^3-1}{x-1}-\dfrac{x^2-1}{x+1}\)
\(=x^2+x+1-x+1=x^2+2\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
bạn ơi tại sao lại bằng 2x +6, bạn có thể giải đáp cho mình đc ko