K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Bài 1:

a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)

\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)

\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)

\(x=\dfrac{7}{20}:\dfrac{2}{5}\)

\(x=\dfrac{7}{8}\)

Vậy \(x=\dfrac{7}{8}\).

b) \(\dfrac{3}{5}=\dfrac{24}{x}\)

\(x=\dfrac{5\cdot24}{3}\)

\(x=40\)

Vậy \(x=40\).

c) \(\left(2x-3\right)^2=16\)

\(\left(2x-3\right)^2=4^2\)

\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)

\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)

Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).

Bài 2:

a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)

\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)

\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)

\(=\dfrac{5-88+5}{20}\)

\(=\dfrac{78}{20}=\dfrac{39}{10}\)

b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)

\(=0\)

Bài 3:

a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)

\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)

\(=\dfrac{-3}{7}\cdot1\)

\(=\dfrac{-3}{7}\)

b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)

\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)

\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)

\(=4-\dfrac{11}{4}\)

\(=\dfrac{16}{4}-\dfrac{11}{4}\)

\(\dfrac{5}{4}\)

Bài 4:

\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)

\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)

\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)

\(=2\cdot\dfrac{1}{15}\)

\(=\dfrac{2}{15}\)

7 tháng 7 2017

Các câu dễ tự làm nha:

\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)

10 tháng 4 2018

a) \(1\dfrac{13}{15}.\left(-5\right)^2.3+\left(\dfrac{8}{15}-\dfrac{19}{60}\right):1\dfrac{23}{24}\)

\(=\dfrac{28}{15}.25.3+\dfrac{13}{60}.\dfrac{24}{47}\)

\(=140+\dfrac{26}{235}=140\dfrac{26}{235}\)

b) \(\dfrac{\left(\dfrac{11^2}{200}+0,414:0,01\right)}{\dfrac{1}{12}-37.25+3\dfrac{1}{6}}\)

\(=\dfrac{\left(\dfrac{121}{200}-41,4\right)}{\dfrac{1}{12}-92519+\dfrac{19}{6}}\)

\(=\dfrac{2\dfrac{191}{207}}{-9251575}\)

12 tháng 5 2017

sao bn ko tính máy tính

12 tháng 5 2017

a) \(\dfrac{-0.8:\left(\dfrac{4}{5}\cdot1.25\right)}{0.64-\dfrac{1}{5}}=\dfrac{\dfrac{-4}{5}:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{5}}=\dfrac{\dfrac{-4}{5}:1}{\dfrac{16}{25}-\dfrac{5}{25}}=\dfrac{\dfrac{-4}{5}}{\dfrac{11}{25}}=\dfrac{-4}{5}\cdot\dfrac{25}{11}=\dfrac{-20}{11}\)

b) \(\left(13.71-1\dfrac{5}{6}\right)\cdot6-6\cdot13\cdot17=\left(\dfrac{1371}{100}-\dfrac{11}{6}\right)\cdot6-6\cdot13\cdot17=\dfrac{3563}{300}\cdot6-6\cdot13\cdot17=\dfrac{3563}{50}-6\cdot13\cdot17=\dfrac{3563}{50}-1326=\dfrac{-62737}{50}\)

c) \(\dfrac{\left(\dfrac{3}{5}+0.415+\dfrac{1}{200}\right):0.01}{30.75+\dfrac{1}{12}+3\dfrac{1}{6}}=\dfrac{\left(\dfrac{3}{5}+\dfrac{83}{200}+\dfrac{1}{200}\right):\dfrac{1}{100}}{\dfrac{123}{4}+\dfrac{1}{12}+\dfrac{19}{6}}=\dfrac{\dfrac{51}{50}:\dfrac{1}{100}}{34}=\dfrac{102}{34}=3\)

8 tháng 8 2017

Bài 3 :

a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)

\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)

\(\Leftrightarrow2A=\dfrac{672}{2019}\)

\(\Leftrightarrow A=\dfrac{336}{2019}\)

b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)

\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)

\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)

8 tháng 8 2017

1.

Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)

Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)

Để thỏa mãn hai điều kiện trên thì \(b=8\)

Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)

Vậy \(a=4;b=8\); số cần tìm là \(254898\)

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

\(.2.\)

\(a.\)

\(2x+\dfrac{1}{2}=-\dfrac{5}{3}\)

\(\Rightarrow2x=-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{13}{6}\)

\(\Rightarrow x=-\dfrac{13}{6}:2=-\dfrac{13}{12}\)

Vậy : \(x=-\dfrac{13}{12}\)

\(b.\)

\(\dfrac{1}{7}-\dfrac{3}{5}x=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{7}-\dfrac{3}{5}=-\dfrac{16}{35}\)

\(\Rightarrow x=-\dfrac{16}{35}:\dfrac{3}{5}=-\dfrac{16}{21}\)

Vậy : \(x=-\dfrac{16}{21}\)

\(c.\)

\(\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{3}{5}\)

\(\Rightarrow\dfrac{3}{4}x=-\dfrac{3}{5}-\dfrac{1}{2}=-\dfrac{11}{10}\)

\(\Rightarrow x=-\dfrac{11}{10}:\dfrac{3}{4}=-\dfrac{22}{15}\)

Vậy : \(x=-\dfrac{22}{15}\)

\(d.\)

\(-\dfrac{2}{15}-x=-\dfrac{3}{10}\)

\(\Rightarrow x=-\dfrac{2}{15}-\left(-\dfrac{3}{10}\right)=\dfrac{1}{6}\)

Vậy : \(x=\dfrac{1}{6}\)

9 tháng 3 2017

còn bài 1